scholarly journals Helical inchworming: a novel translocation mechanism for a ring ATPase

Author(s):  
Alexander B. Tong ◽  
Carlos Bustamante

Abstract Ring ATPases perform a variety of tasks in the cell. Their function involves complex communication and coordination among the often identical subunits. Translocases in this group are of particular interest as they involve both chemical and mechanical actions in their operation. We study the DNA packaging motor of bacteriophage φ29, and using single-molecule optical tweezers and single-particle cryo-electron microscopy, have discovered a novel translocation mechanism for a molecular motor.

2021 ◽  
Vol 11 (1) ◽  
Author(s):  
Julian Giraldo-Barreto ◽  
Sebastian Ortiz ◽  
Erik H. Thiede ◽  
Karen Palacio-Rodriguez ◽  
Bob Carpenter ◽  
...  

AbstractCryo-electron microscopy (cryo-EM) extracts single-particle density projections of individual biomolecules. Although cryo-EM is widely used for 3D reconstruction, due to its single-particle nature it has the potential to provide information about a biomolecule’s conformational variability and underlying free-energy landscape. However, treating cryo-EM as a single-molecule technique is challenging because of the low signal-to-noise ratio (SNR) in individual particles. In this work, we propose the cryo-BIFE method (cryo-EM Bayesian Inference of Free-Energy profiles), which uses a path collective variable to extract free-energy profiles and their uncertainties from cryo-EM images. We test the framework on several synthetic systems where the imaging parameters and conditions were controlled. We found that for realistic cryo-EM environments and relevant biomolecular systems, it is possible to recover the underlying free energy, with the pose accuracy and SNR as crucial determinants. We then use the method to study the conformational transitions of a calcium-activated channel with real cryo-EM particles. Interestingly, we recover not only the most probable conformation (used to generate a high-resolution reconstruction of the calcium-bound state) but also a metastable state that corresponds to the calcium-unbound conformation. As expected for turnover transitions within the same sample, the activation barriers are on the order of $$k_BT$$ k B T . We expect our tool for extracting free-energy profiles from cryo-EM images to enable more complete characterization of the thermodynamic ensemble of biomolecules.


Physiology ◽  
2002 ◽  
Vol 17 (5) ◽  
pp. 213-218 ◽  
Author(s):  
Caspar Rüegg ◽  
Claudia Veigel ◽  
Justin E. Molloy ◽  
Stephan Schmitz ◽  
John C. Sparrow ◽  
...  

Muscle myosin II is an ATP-driven, actin-based molecular motor. Recent developments in optical tweezers technology have made it possible to study movement and force production on the single-molecule level and to find out how different myosin isoforms may have adapted to their specific physiological roles.


Science ◽  
2018 ◽  
Vol 361 (6405) ◽  
pp. 876-880 ◽  
Author(s):  
Yifan Cheng

Cryo–electron microscopy, or simply cryo-EM, refers mainly to three very different yet closely related techniques: electron crystallography, single-particle cryo-EM, and electron cryotomography. In the past few years, single-particle cryo-EM in particular has triggered a revolution in structural biology and has become a newly dominant discipline. This Review examines the fascinating story of its start and evolution over the past 40-plus years, delves into how and why the recent technological advances have been so groundbreaking, and briefly considers where the technique may be headed in the future.


2020 ◽  
Author(s):  
Jing Cheng ◽  
Bufan Li ◽  
Long Si ◽  
Xinzheng Zhang

AbstractCryo-electron microscopy (cryo-EM) tomography is a powerful tool for in situ structure determination. However, this method requires the acquisition of tilt series, and its time consuming throughput of acquiring tilt series severely slows determination of in situ structures. By treating the electron densities of non-target protein as non-Gaussian distributed noise, we developed a new target function that greatly improves the efficiency of the recognition of the target protein in a single cryo-EM image without acquiring tilt series. Moreover, we developed a sorting function that effectively eliminates the false positive detection, which not only improves the resolution during the subsequent structure refinement procedure but also allows using homolog proteins as models to recognize the target protein. Together, we developed an in situ single particle analysis (isSPA) method. Our isSPA method was successfully applied to solve structures of glycoproteins on the surface of a non-icosahedral virus and Rubisco inside the carboxysome. The cryo-EM data from both samples were collected within 24 hours, thus allowing fast and simple structural determination in situ.


2016 ◽  
Vol 110 (3) ◽  
pp. 46a ◽  
Author(s):  
Li Dai ◽  
Digvijay Singh ◽  
Reza Vafabakhsh ◽  
Marthandan Mahalingam ◽  
Vishal Kottadiel ◽  
...  

Sign in / Sign up

Export Citation Format

Share Document