Global Formulation and Motion Planning for a Sphere Rolling on a Smooth Surface

2018 ◽  
Vol 16 (6) ◽  
pp. 2709-2717 ◽  
Author(s):  
Muhammad Rehan ◽  
Mahmut Reyhanoglu
Author(s):  
B.V.V. Prasad ◽  
E. Marietta ◽  
J.W. Burns ◽  
M.K. Estes ◽  
W. Chiu

Rotaviruses are spherical, double-shelled particles. They have been identified as a major cause of infantile gastroenteritis worldwide. In our earlier studies we determined the three-dimensional structures of double-and single-shelled simian rotavirus embedded in vitreous ice using electron cryomicroscopy and image processing techniques to a resolution of 40Å. A distinctive feature of the rotavirus structure is the presence of 132 large channels spanning across both the shells at all 5- and 6-coordinated positions of a T=13ℓ icosahedral lattice. The outer shell has 60 spikes emanating from its relatively smooth surface. The inner shell, in contrast, exhibits a bristly surface made of 260 morphological units at all local and strict 3-fold axes (Fig.l).The outer shell of rotavirus is made up of two proteins, VP4 and VP7. VP7, a glycoprotein and a neutralization antigen, is the major component. VP4 has been implicated in several important functions such as cell penetration, hemagglutination, neutralization and virulence. From our earlier studies we had proposed that the spikes correspond to VP4 and the rest of the surface is composed of VP7. Our recent structural studies, using the same techniques, with monoclonal antibodies specific to VP4 have established that surface spikes are made up of VP4.


2006 ◽  
Author(s):  
Jonathan Vaughan ◽  
Steven Jax ◽  
David A. Rosenbaum
Keyword(s):  

Author(s):  
Ioan Sucan ◽  
Sachin Chitta
Keyword(s):  


1995 ◽  
Author(s):  
Sumanta Guha ◽  
Rama D. Puvvada ◽  
Deepti Suri ◽  
Ichiro Suzuki

2020 ◽  
Author(s):  
Marcos Sforza ◽  
Dennis C Hammond ◽  
Giovanni Botti ◽  
Per Hedén ◽  
Manuel Chacón Quirós ◽  
...  

Sign in / Sign up

Export Citation Format

Share Document