Passive Fuzzy Control Design for a Class of Nonlinear Distributed Parameter Systems with Time-varying Delay

2019 ◽  
Vol 18 (4) ◽  
pp. 911-921 ◽  
Author(s):  
Xunwu Yin ◽  
Xiaona Song ◽  
Mi Wang
Mathematics ◽  
2021 ◽  
Vol 9 (6) ◽  
pp. 661
Author(s):  
Huansen Fu ◽  
Baotong Cui ◽  
Bo Zhuang ◽  
Jianzhong Zhang

This work proposes a state estimation strategy over mobile sensor–actuator networks with missing measurements for a class of distributed parameter systems (DPSs) with time-varying delay. Initially, taking advantage of the abstract development equation theory and operator semigroup method, this kind of delayed DPSs described by partial differential equations (PDEs) is derived for evolution equations. Subsequently, the distributed state estimators including consistency component and gain component are designed; the purpose is to estimate the original state distribution of the delayed DPSs with missing measurements. Then, a delay-dependent guidance approach is presented in the form of mobile control forces by constructing an appropriate Lyapunov function candidate. Furthermore, by applying Lyapunov stability theorem, operator semigroup theory, and a stochastic analysis approach, the estimation error systems have been proved asymptotically stable in the mean square sense, which indicates the estimators can approximate the original system states effectively when this kind of DPS has time-delay and the mobile sensors occur missing measurements. Finally, the correctness of control strategy is illustrated by numerical simulation results.


Author(s):  
Jun-Wei Wang ◽  
Chang-Yin Sun

This paper extends the framework of Lyapunov–Krasovskii functional to address the problem of exponential stabilization for a class of linearly distributed parameter systems (DPSs) with continuous differentiable time-varying delay and a spatiotemporal control input, where the system model is described by parabolic partial differential-difference equations (PDdEs) subject to homogeneous Neumann or Dirichlet boundary conditions. By constructing an appropriate Lyapunov–Krasovskii functional candidate and using some inequality techniques (e.g., spatial integral form of Jensen's inequalities and vector-valued Wirtinger's inequalities), some delay-dependent exponential stabilization conditions are derived, and presented in terms of standard linear matrix inequalities (LMIs). These stabilization conditions are applicable to both slow-varying and fast-varying time delay cases. The detailed and rigorous proof of the closed-loop exponential stability is also provided in this paper. Moreover, the main results of this paper are reduced to the constant time delay case and extended to the stochastic time-varying delay case, and also extended to address the problem of exponential stabilization for linear parabolic PDdE systems with a temporal control input. The numerical simulation results of two examples show the effectiveness and merit of the main results.


Author(s):  
Wenhua Xia ◽  
Yiping Luo ◽  
Bifeng Zhou ◽  
Zhujun Wang

A class of time-varying delay distributed parameter systems with input saturation is investigated in this paper. The periodic intermittent control method is adopted to make the system stable in finite time, improve the control performance of the system, and save on control cost. A periodic intermittent controller combined saturated input is designed to ensure the stability of the proposed system in finite time. Lyapunov–Krasoviskii stability theory and Matrix inequality techniques are used to analyze the finite-time stability of the system, and sufficient conditions for the system to be stable in finite time are obtained. Finally, the correctness of the theorems is verified by simulation experiments.


Sign in / Sign up

Export Citation Format

Share Document