A Robust Automated Machine Learning System with Pseudoinverse Learning

Author(s):  
Ke Wang ◽  
Ping Guo
AI ◽  
2021 ◽  
Vol 2 (1) ◽  
pp. 34-47
Author(s):  
Borja Espejo-Garcia ◽  
Ioannis Malounas ◽  
Eleanna Vali ◽  
Spyros Fountas

In the past years, several machine-learning-based techniques have arisen for providing effective crop protection. For instance, deep neural networks have been used to identify different types of weeds under different real-world conditions. However, these techniques usually require extensive involvement of experts working iteratively in the development of the most suitable machine learning system. To support this task and save resources, a new technique called Automated Machine Learning has started being studied. In this work, a complete open-source Automated Machine Learning system was evaluated with two different datasets, (i) The Early Crop Weeds dataset and (ii) the Plant Seedlings dataset, covering the weeds identification problem. Different configurations, such as the use of plant segmentation, the use of classifier ensembles instead of Softmax and training with noisy data, have been compared. The results showed promising performances of 93.8% and 90.74% F1 score depending on the dataset used. These performances were aligned with other related works in AutoML, but they are far from machine-learning-based systems manually fine-tuned by human experts. From these results, it can be concluded that finding a balance between manual expert work and Automated Machine Learning will be an interesting path to work in order to increase the efficiency in plant protection.


2019 ◽  
Author(s):  
Adriana Tomic ◽  
Ivan Tomic ◽  
Yael Rosenberg-Hasson ◽  
Cornelia L. Dekker ◽  
Holden T. Maecker ◽  
...  

AbstractMachine learning holds considerable promise for understanding complex biological processes such as vaccine responses. Capturing interindividual variability is essential to increase the statistical power necessary for building more accurate predictive models. However, available approaches have difficulty coping with incomplete datasets which is often the case when combining studies. Additionally, there are hundreds of algorithms available and no simple way to find the optimal one. Here, we developed Sequential Iterative Modelling “OverNight” or SIMON, an automated machine learning system that compares results from 128 different algorithms and is particularly suitable for datasets containing many missing values. We applied SIMON to data from five clinical studies of seasonal influenza vaccination. The results reveal previously unrecognized CD4+ and CD8+ T cell subsets strongly associated with a robust antibody response to influenza antigens. These results demonstrate that SIMON can greatly speed up the choice of analysis modalities. Hence, it is a highly useful approach for data-driven hypothesis generation from disparate clinical datasets. Our strategy could be used to gain biological insight from ever-expanding heterogeneous datasets that are publicly available.


2019 ◽  
Vol 203 (3) ◽  
pp. 749-759 ◽  
Author(s):  
Adriana Tomic ◽  
Ivan Tomic ◽  
Yael Rosenberg-Hasson ◽  
Cornelia L. Dekker ◽  
Holden T. Maecker ◽  
...  

Author(s):  
Yu-Feng Li ◽  
Hai Wang ◽  
Tong Wei ◽  
Wei-Wei Tu

Automated Machine Learning (AutoML) aims to build an appropriate machine learning model for any unseen dataset automatically, i.e., without human intervention. Great efforts have been devoted on AutoML while they typically focus on supervised learning. In many applications, however, semisupervised learning (SSL) are widespread and current AutoML systems could not well address SSL problems. In this paper, we propose to present an automated learning system for SSL (AUTO-SSL). First, meta-learning with enhanced meta-features is employed to quickly suggest some instantiations of the SSL techniques which are likely to perform quite well. Second, a large margin separation method is proposed to fine-tune the hyperparameters and more importantly, alleviate performance deterioration. The basic idea is that, if a certain hyperparameter owns a high quality, its predictive results on unlabeled data may have a large margin separation. Extensive empirical results over 200 cases demonstrate that our proposal on one side achieves highly competitive or better performance compared to the state-of-the-art AutoML system AUTO-SKLEARN and classical SSL techniques, on the other side unlike classical SSL techniques which often significantly degenerate performance, our proposal seldom suffers from such deficiency.


Author(s):  
Silvia Cristina Nunes das Dores ◽  
Carlos Soares ◽  
Duncan Ruiz

2021 ◽  
pp. 1098612X2110012
Author(s):  
Jade Renard ◽  
Mathieu R Faucher ◽  
Anaïs Combes ◽  
Didier Concordet ◽  
Brice S Reynolds

Objectives The aim of this study was to develop an algorithm capable of predicting short- and medium-term survival in cases of intrinsic acute-on-chronic kidney disease (ACKD) in cats. Methods The medical record database was searched to identify cats hospitalised for acute clinical signs and azotaemia of at least 48 h duration and diagnosed to have underlying chronic kidney disease based on ultrasonographic renal abnormalities or previously documented azotaemia. Cases with postrenal azotaemia, exposure to nephrotoxicants, feline infectious peritonitis or neoplasia were excluded. Clinical variables were combined in a clinical severity score (CSS). Clinicopathological and ultrasonographic variables were also collected. The following variables were tested as inputs in a machine learning system: age, body weight (BW), CSS, identification of small kidneys or nephroliths by ultrasonography, serum creatinine at 48 h (Crea48), spontaneous feeding at 48 h (SpF48) and aetiology. Outputs were outcomes at 7, 30, 90 and 180 days. The machine-learning system was trained to develop decision tree algorithms capable of predicting outputs from inputs. Finally, the diagnostic performance of the algorithms was calculated. Results Crea48 was the best predictor of survival at 7 days (threshold 1043 µmol/l, sensitivity 0.96, specificity 0.53), 30 days (threshold 566 µmol/l, sensitivity 0.70, specificity 0.89) and 90 days (threshold 566 µmol/l, sensitivity 0.76, specificity 0.80), with fewer cats still alive when their Crea48 was above these thresholds. A short decision tree, including age and Crea48, predicted the 180-day outcome best. When Crea48 was excluded from the analysis, the generated decision trees included CSS, age, BW, SpF48 and identification of small kidneys with an overall diagnostic performance similar to that using Crea48. Conclusions and relevance Crea48 helps predict short- and medium-term survival in cats with ACKD. Secondary variables that helped predict outcomes were age, CSS, BW, SpF48 and identification of small kidneys.


Sign in / Sign up

Export Citation Format

Share Document