The neoarchean ophiolite in the North China craton: Early precambrian plate tectonics and scientific debate

2012 ◽  
Vol 23 (3) ◽  
pp. 277-284 ◽  
Author(s):  
Timothy M. Kusky ◽  
Mingguo Zhai
2014 ◽  
Vol 51 (3) ◽  
pp. 297-311 ◽  
Author(s):  
Timothy M. Kusky ◽  
Xiaoyong Li ◽  
Zhensheng Wang ◽  
Jianmin Fu ◽  
Luo Ze ◽  
...  

A review and comparison of the tectonic history of the North China and Slave cratons reveal that the two cratons have many similarities and some significant differences. The similarities rest in the conclusion that both cratons have a history of a Wilson Cycle, having experienced rifting of an old continent in the late Archean, development of a rift to passive margin sequence, collision of this passive margin with arcs within 100–200 Ma of the formation of the passive margin, reversal of subduction polarity, then eventual climactic collision with another arc terrane, microcontinental fragment, or continent. This cycle demonstrates the operation of Paleozoic-style plate tectonics in the late Archean. The main differences lie in the later tectonic evolution. The Slave’s post-cratonization history is dominated by subduction dipping away from the interior of the craton, and later incorporation into the interior of a larger continent, whereas the North China Craton has had a long history of subduction beneath the craton, including presently being located above the flat-lying Pacific slab resting in the mantle transition zone, placing it in a broad back-arc setting, with multiple mantle hydration events and collisions along its borders. The hydration enhances melting in the overlying mantle, and leads to melts migrating upwards to thermochemically erode the lithospheric root. This major difference may explain why the relatively small Slave craton preserves its thick Archean lithospheric root, whereas the eastern North China Craton has lost it.


2018 ◽  
Vol 318 ◽  
pp. 122-132 ◽  
Author(s):  
Suhua Jiang ◽  
Wei Cao ◽  
Sanzhong Li ◽  
Gang Wang ◽  
Ian Somerville ◽  
...  

2021 ◽  
Vol 12 (1) ◽  
Author(s):  
Guozheng Sun ◽  
Shuwen Liu ◽  
Peter A. Cawood ◽  
Ming Tang ◽  
Jeroen van Hunen ◽  
...  

AbstractConstraining thickness and geothermal gradient of Archean continental crust are crucial to understanding geodynamic regimes of the early Earth. Archean crust-sourced tonalitic–trondhjemitic–granodioritic gneisses are ideal lithologies for reconstructing the thermal state of early continental crust. Integrating experimental results with petrochemical data from the Eastern Block of the North China Craton allows us to establish temporal–spatial variations in thickness, geothermal gradient and basal heat flow across the block, which we relate to cooling mantle potential temperature and resultant changing geodynamic regimes from vertical tectonics in the late Mesoarchean (~2.9 Ga) to plate tectonics with hot subduction in the early to late Neoarchean (~2.7–2.5 Ga). Here, we show the transition to a plate tectonic regime plays an important role in the rapid cooling of the mantle, and thickening and strengthening of the lithosphere, which in turn prompted stabilization of the cratonic lithosphere at the end of the Archean.


Sign in / Sign up

Export Citation Format

Share Document