Distribution characteristics and sources of sedimentary organic matter in the pearl river estuary and adjacent coastal waters, southern China

2013 ◽  
Vol 24 (2) ◽  
pp. 262-273 ◽  
Author(s):  
Ling Zhang ◽  
Kedong Yin ◽  
Yongqiang Yang ◽  
Derong Zhang
The Holocene ◽  
2011 ◽  
Vol 22 (6) ◽  
pp. 705-715 ◽  
Author(s):  
Fengling Yu ◽  
Yongqiang Zong ◽  
Jeremy M Lloyd ◽  
Melanie J Leng ◽  
Adam D Switzer ◽  
...  

2010 ◽  
Vol 7 (2) ◽  
pp. 2889-2926 ◽  
Author(s):  
B. He ◽  
M. Dai ◽  
W. Huang ◽  
Q. Liu ◽  
H. Chen ◽  
...  

Abstract. Organic matter in surface sediments from the upper reach of the Pearl River Estuary and Lingdingyang Bay, as well as the adjacent northern South China Sea shelf was characterized by a variety of techniques, including elemental (C and N), stable carbon isotopic (δ 13C) composition, as well as molecular-level analyses. Total organic carbon (TOC) content was 1.61±1.20% in the upper reach down to 1.00±0.22% in Lingdingyang Bay and to 0.80±0.10% on the inner shelf and 0.58±0.06% on the outer shelf. δ13C values ranged from −25.11‰ to −21.28‰ across the studied area, with a trend of enrichment seaward. The spatial trend in C/N ratios mirrored that of δ13C, with a substantial decrease in C/N ratio from 10.9±1.3 in the Lingdingyang Bay surface sediments to 6.5±0.09 in the outer shelf surface sediments. Total carbohydrate yields ranged from 22.1 to 26.7 mg (100 mg OC)−1, and typically followed TOC concentrations in the estuarine and shelf sediments, suggesting that the relative abundance of total carbohydrate was fairly constant in TOC. Total neutral sugars as detected by the nine major monosaccharides (lyxose, rhamnose, ribose, arabinose, fucose, xylose, galactose, mannose, and glucose) yielded between 4.0 and 18.6 mg (100 mg OC)−1 in the same sediments, suggesting that a significant amount of carbohydrates were not neutral aldoses. The bulk organic matter properties, isotopic composition and C/N ratios, combined with molecular-level carbohydrate compositions were used to assess the sources and accumulation of terrestrial organic matter in the Pearl River Estuary and the adjacent northern South China Sea shelf. Results showed a mixture of terrestrial riverine organic carbon with in situ phytoplankton organic carbon in the areas studied. Using a two end-member mixing model based on δ13C values and C/N ratios, we estimated that the terrestrial organic carbon contribution to the surface sediment TOC was ca. 57±13% for Lingdingyang Bay, 19±2% for the inner shelf, which decreased further to 4.3±0.5% on the outer shelf. The molecular composition of the carbohydrate in surface sediments also suggested that the inner estuary was rich in terrestrial-derived carbohydrates but that the contribution of terrestrial-derived carbohydrates decreased offshore. Terrestrial organic carbon accumulation flux was estimated as 1.37±0.92×1011 g yr−1 in Lingdingyang Bay, which accounted for 37±25% of the terrestrial organic carbon transported to the Bay. The burial efficiency of terrestrial organic matter was markedly lower than that of suspended particulate substance (~71%) suggesting that the riverine POC undergoes significant degradation and replacement during transportation through the estuary.


Water ◽  
2020 ◽  
Vol 12 (11) ◽  
pp. 3245
Author(s):  
Lixia Niu ◽  
Pieter van Gelder ◽  
Xiangxin Luo ◽  
Huayang Cai ◽  
Tao Zhang ◽  
...  

The Pearl River estuary is an ecologically dynamic region located in southern China that experiences strong gradients in its biogeochemical properties. This study examined the seasonality of nutrient dynamics, identified related environmental responses, and evaluated how river discharge regulated nutrient sink and source. The field investigation showed significant differences of dissolved nutrients with seasons and three zones of the estuary regarding the estuarine characteristics. Spatially, nutrients exhibited a clear decreasing trend along the salinity gradient; temporally, their levels were obviously higher in summer than other seasons. The aquatic environment was overall eutrophic, as a result of increased fluxes of nitrogen and silicate. This estuary was thus highly sensitive to nutrient enrichment and related pollution of eutrophication. River discharge, oceanic current, and atmospheric deposition distinctly influenced the nutrient status. These factors accordingly may influence phytoplankton that are of importance in coastal ecosystems. Phytoplankton (in terms of chlorophyll) was potentially phosphate limited, which then more frequently resulted in nutrient pollution and blooms. Additionally, the nutrient sources were implied according to the cause–effect chains between nutrients, hydrology, and chlorophyll, identified by the PCA-generated quantification. Nitrogen was constrained by marine-riverine waters and their mutual increase-decline trend, and a new source was supplemented along the transport from river to sea, while a different source of terrestrial emission from coastal cities contributed to phosphate greatly.


Sign in / Sign up

Export Citation Format

Share Document