Toxic Impact of Alkylphenols on the Fish Reproduction and Endocrine Disruption

Author(s):  
Geeta J. Gautam ◽  
Radha Chaube
2017 ◽  
Author(s):  
Kewen Xiong ◽  
Chunyun Zhong ◽  
Xin Wang

AbstractSynthetic progestins contamination is common in the aquatic ecosystem, which may lead to serious health problem on aquatic animals. Melengestrol acetate (MGA) has been detected in the aquatic environment; however, its potential effects on fish reproduction are largely unclear. Here, we aimed to investigate the endocrine disruption and impact of MGA on zebrafish reproduction. Six-month old reproductive zebrafish were exposed to four nominal concentrations of MGA (1,10, 100 and 200 ng/L) for 15 days. Treatment with MGA reduced the egg production with a significant decrease at 200 ng/L. The circulating concentrations of estradiol and testosterone in female zebrafish or 11-keto testosterone in male zebrafish were significantly diminished compared to the non-exposed control fish. The early embryonic development or hatching rates were unaffected during the MGA exposure. Our results indicated that MGA was a potent endocrine disruptor in fish and the fish reproduction could be impaired even during a short-term exposure to MGA.


1998 ◽  
Vol 17 (1) ◽  
pp. 49-57 ◽  
Author(s):  
Lisa D. Arcand-Hoy ◽  
William H. Benson

2019 ◽  
Vol 0 (0) ◽  
pp. 0-0
Author(s):  
Samah Bassem ◽  
Marwa I. Abd El Tawab ◽  
Tarek Temraz ◽  
Wagdy Bassaly ◽  
Farouk K. El-baz ◽  
...  

2009 ◽  
Vol 24 (4) ◽  
pp. 224-234 ◽  
Author(s):  
Anna Hakuć-Błażowska ◽  
Krzysztof Kupren ◽  
Konrad Turkowski ◽  
Katarzyna Targońska ◽  
Marta Jamróz ◽  
...  

Author(s):  
S. Assylbekova ◽  
N. Badryzlova ◽  
L. Kushnikova

The article presents the results of the first research on artificial reproduction in industrial conditions of the endemic, narrow-areal subspecies of Brachymystax lenok Savinovi, which lives in lake Markakol, East Kazakhstan region. The indicators of the heat sum characteristic for each stage of development, the rate of development and growth of the Markakolsky lenok from the moment of pre-breeding to late juveniles are described. To develop technological approaches for artificial fish reproduction, one of the most important points is to determine the optimal conditions for each stage and assess the risks (loss of fish products). At the stage of insemination and transportation of eggs to the place of incubation, the loss was 50 %. The largest losses of fish products were registered during the incubation stage. The most painlessly passed the period of holding and lifting on the float, where the loss was only 3 %. When growing pre-larvae and larvae in the pool, the daily waste did not exceed 1 %. Small-sized animals that were unable to adapt to artificial feeds fell into the waste. Losses during this period amounted to 15 % of the previous stage. In General, the yield of juveniles from the moment of fertilization to the end of the experiment was 16 %. The crucial factor in the development and growth of Lenok Markakolosky is the temperature regime. For the period of embryonic development, the most favorable water temperature is 7–8 °C. From the moment of hatching, the water temperature must be increased to 10–12 °C, and the optimal temperature for the cage growing of fingerlings varies from 12 to 14 °C.


2010 ◽  
Vol 45 (2) ◽  
pp. 187-200 ◽  
Author(s):  
Joanne L. Parrott ◽  
L. Mark Hewitt ◽  
Tibor G. Kovacs ◽  
Deborah L. MacLatchy ◽  
Pierre H. Martel ◽  
...  

Abstract To evaluate currently available bioassays for their use in investigating the causes of pulp and paper mill effluent effects on fish reproduction, the responses of wild white sucker (Catostomus commersoni) collected from the receiving environment at the bleached kraft mill at La Tuque, Quebec, were compared with responses of fathead minnow (Pimephales promelas) exposed to effluent in a laboratory lifecycle test. White sucker collected at effluent exposed sites had increased liver size but none of the reproductive effects that had been documented in earlier field studies at this site. Exposure to 1, 3, 10, 30, and 100% bleached kraft mill effluent (BKME) in the lab led to significantly decreased length, but increased weight and liver size in male fathead minnow. Female length was also decreased and liver size was increased at high effluent exposures. Most effluent concentrations (1 to 30%) significantly increased egg production compared with controls. The fathead minnow lifecycle assay mirrored the effects seen in wild fish captured downstream of the BKME discharge. These results will be used to select short-term fish tests for investigating the causes of and solutions to the effects of mill effluents on fish reproduction.


2008 ◽  
Vol 43 (2-3) ◽  
pp. 161-171 ◽  
Author(s):  
Pierre Martel ◽  
Tibor Kovacs ◽  
Virginie Bérubé

Abstract Pulp and paper mill effluents have been reported to cause changes in reproductive indicators of fish in laboratory and field studies. These changes include reduced egg production and gonad size, and altered hormone levels and expression of secondary sex characteristics. We examined the performance of biotreatment plants for their potential in abating effects of pulp and paper mill effluents on fish reproduction under laboratory conditions. A bleached kraft mill effluent (BKME) treated in an aerated lagoon and a thermomechanical pulp mill effluent (TMPE) treated by aerobic sludge in a sequential batch reactor were selected for study. Mature fathead minnows (Pimephales promelas) were exposed to effluents before and after biotreatment under continuous renewal conditions for 21 days. Egg production was monitored daily, while morphometric parameters (length, weight, gonad size), secondary sexual characteristics, and steroid hormone and vitellogenin levels were measured at the end of the effluent exposure. The effluent from both mills before biotreatment impaired the reproductive capacity of minnows (egg production) at concentrations of 10 and 20% vol/vol, but not at 2% vol/vol. Exposure to biotreated effluents from both mills at concentrations of 2, 10, 20, and 40% vol/vol caused no significant differences in overall reproductive capacity of minnows as compared with controls. These results indicate that biotreatment can significantly improve the quality of a BKME and an effluent from a TMP mill with respect to the reproductive capacity of fish as determined in laboratory tests.


Sign in / Sign up

Export Citation Format

Share Document