Low-cost and high-color-quality white light emitting diodes based on CdSe/ZnS quantum dots

2015 ◽  
Vol 44 (3) ◽  
pp. 249-254 ◽  
Author(s):  
Xuefeng Peng
2016 ◽  
Vol 22 (1) ◽  
pp. 35-41 ◽  
Author(s):  
Huang-Yu Lin ◽  
Sheng-Wen Wang ◽  
Chien-Chung Lin ◽  
Kuo-Ju Chen ◽  
Hau-Vei Han ◽  
...  

2017 ◽  
Vol 29 (37) ◽  
pp. 1702910 ◽  
Author(s):  
Zifei Wang ◽  
Fanglong Yuan ◽  
Xiaohong Li ◽  
Yunchao Li ◽  
Haizheng Zhong ◽  
...  

2021 ◽  
Vol 10 (1) ◽  
pp. 465-477
Author(s):  
Longshi Rao ◽  
Qing Zhang ◽  
Mingfu Wen ◽  
Zhongfa Mao ◽  
Huaxian Wei ◽  
...  

Abstract White light-emitting diodes (WLEDs) hold great promise in lighting, display, and visible light communication devices, and single-component white emission carbon quantum dots (SCWE-CQDs) as the key component of WLEDs have many outstanding advantages. However, rapid and efficient synthesis of SCWE-CQDs with high photoluminescence quantum yield (PLQY) and stability remains challenging. Here, we report a novel solvent engineering strategy to obtain highly photoluminescent SCWE-CQDs by controlling the dilution ratios between N,N-dimethylformamide (DMF) and pristine red carbon quantum dots (RCQDs) solution. By optimizing synthesis conditions, the relative PLQY of the SCWE-CQDs solution reached 53%. Morphological, structural, and optical property characterizations indicate that the combined action of the hydrogen bond (HB) effect and the size effect leads to the blue shift of RCQDs, but the HB effect is more dominant than the particle size in causing large spectral shifts. In addition, the WLEDs with high color rendering index of 89 and remarkable reliability were obtained based on the highly photoluminescent SCWE-CQDs. This facile solvent engineering approach for synthesizing tunable emission CQDs will promote the progress of carbon-based luminescent materials for applications in optoelectronic devices.


2019 ◽  
Vol 669 ◽  
pp. 34-41 ◽  
Author(s):  
Zhiwei He ◽  
Congbiao Jiang ◽  
Chen Song ◽  
Juanhong Wang ◽  
Zhenji Zhong ◽  
...  

2021 ◽  
Vol 10 (4) ◽  
pp. 1930-1935
Author(s):  
Phan Xuan Le ◽  
Le Hung Tien

Among the structures using for fabricating white light-emitting diodes (WLEDs) such as the conformal coating or in-cup geometries, the remote phosphor structure gives the highest luminous efficacy. However, in terms of color quality, its performance is not as good as the others. The red-light compensation has been reported as the effective solution for enhancing the color quality of WLEDs. Hence, this study adopted the idea and applied to the dual-layer phosphor structure. The phosphor used to boost the red color in light formation is (Y,Gd)BO3:Eu particle. The dual-layer remote phosphor structure was simulated with the red (Y,Gd)BO3:Eu phosphor layer above the original yellow phosphor YAG:Ce3+ one. The WLEDs with different correlated color temperatures of 5600 K, 6600 K and 7700K were experimented. Mie-theory and Lambert-Beer law were applied to examine the results. The growth in color rendering index (CRI) and color quality scale (CQS) with the increase of (Y,Gd)BO3:Eu phosphor concentration was observed. Nevertheless, the lumen efficacy would be degraded if the concentration was over a certain number. The information provided in this article is useful for the development of high-power WLED production with greater color quality.


Sign in / Sign up

Export Citation Format

Share Document