Molecular characterization and phylogenetic analysis of a Greek lentil isolate of Pea seed-borne mosaic virus

2015 ◽  
Vol 43 (5) ◽  
pp. 615-628 ◽  
Author(s):  
Antonis Giakountis ◽  
Aikaterini Skoufa ◽  
Epameinondas I. Paplomatas ◽  
Ioannis S. Tokatlidis ◽  
Elisavet K. Chatzivassiliou
2021 ◽  
Vol 55 (2) ◽  
pp. 161-166
Author(s):  
A. Almási ◽  
R. Boros ◽  
K. Salánki ◽  
B. Barna

One of the most important diseases of pea is caused by Pea seed-borne mosaic virus (PSbMV), which has a relatively wide host range. Since there are few varieties with resistance against the virus, and spraying insecticides is not very effective, the determination of the disease and the pathogen in the seeds is very important. Inoculum prepared from pea seeds showing typical virus symptoms caused very mild symptoms on Chenopodium amaranticolor and C. quinoa, but several chlorotic/necrotic lesions on bean (Phaseolus vulgaris) cv. Scarlet, and systemic symptoms with mosaic and curling of top leaves on bean cv. Maxidor. The detection of the virus was carried out by PCR using universal primers and virus sequence analysis. According to the phylogenetic analysis the PSbMV isolate identified in Hungary belongs to the pathotype P1 and associated with the cluster 2 isolates.


2018 ◽  
Vol 34 (1) ◽  
pp. 32-40
Author(s):  
T. P. Shevchenko ◽  
O. V. Tymchyshyn ◽  
I. A. Kosenko ◽  
I. G. Budzanivska ◽  
O. V. Shevchenko ◽  
...  

2020 ◽  
Vol 141 ◽  
pp. 39-46
Author(s):  
MD Dorjievna Batueva ◽  
X Pan ◽  
J Zhang ◽  
X Liu ◽  
W Wei ◽  
...  

In the present study, we provide supplementary data for Myxidium cf. rhodei Léger, 1905 based on morphological, histological and molecular characterization. M. cf. rhodei was observed in the kidneys of 918 out of 942 (97%) roach Rutilus rutilus (Linnaeus, 1758). Myxospores of M. cf. rhodei were fusiform with pointed ends, measuring 12.7 ± 0.1 SD (11.8-13.4) µm in length and 4.6 ± 0.1 (3.8-5.4) µm in width. Two similar pear-shaped polar capsules were positioned at either ends of the longitudinal axis of the myxospore: each of these capsules measured 4.0 ± 0.1 (3.1-4.7) µm in length and 2.8 ± 0.1 (2.0-4.0) µm in width. Polar filaments were coiled into 4 to 5 turns. Approximately 18-20 longitudinal straight ridges were observed on the myxospore surface. The suture line was straight and distinctive, running near the middle of the valves. Histologically, the plasmodia of the present species were found in the Bowman’s capsules, and rarely in the interstitium of the host. Phylogenetic analysis revealed that M. cf. rhodei was sister to M. anatidum in the Myxidium clade including most Myxidium species from freshwater hosts.


Pathogens ◽  
2021 ◽  
Vol 10 (1) ◽  
pp. 53
Author(s):  
Vivek Khanal ◽  
Harrington Wells ◽  
Akhtar Ali

Field information about viruses infecting crops is fundamental for understanding the severity of the effects they cause in plants. To determine the status of cucurbit viruses, surveys were conducted for three consecutive years (2016–2018) in different agricultural districts of Oklahoma. A total of 1331 leaf samples from >90 fields were randomly collected from both symptomatic and asymptomatic cucurbit plants across 11 counties. All samples were tested with the dot-immunobinding assay (DIBA) against the antisera of 10 known viruses. Samples infected with papaya ringspot virus (PRSV-W), watermelon mosaic virus (WMV), zucchini yellow mosaic virus (ZYMV), and cucurbit aphid-borne-yellows virus (CABYV) were also tested by RT-PCR. Of the 10 viruses, PRSV-W was the most widespread, with an overall prevalence of 59.1%, present in all 11 counties, followed by ZYMV (27.6%), in 10 counties, and WMV (20.7%), in seven counties, while the remaining viruses were present sporadically with low incidence. Approximately 42% of the infected samples were positive, with more than one virus indicating a high proportion of mixed infections. CABYV was detected for the first time in Oklahoma, and the phylogenetic analysis of the first complete genome sequence of a CABYV isolate (BL-4) from the US showed a close relationship with Asian isolates.


Viruses ◽  
2021 ◽  
Vol 13 (7) ◽  
pp. 1254
Author(s):  
Hang Yin ◽  
Zheng Dong ◽  
Xulong Wang ◽  
Shuhao Lu ◽  
Fei Xia ◽  
...  

Marigold plants with symptoms of mosaic, crinkle, leaf curl and necrosis were observed and small RNA and ribo-depleted total RNA deep sequencing were conducted to identify the associated viruses. Broad bean wilt virus 2, cucumber mosaic virus, turnip mosaic virus, a new potyvirus tentatively named marigold mosaic virus (MMV) and a new partitivirus named as marigold cryptic virus (MCV) were finally identified. Complete genome sequence analysis showed MMV was 9811 nt in length, encoding a large polyprotein with highest aa sequence identity (57%) with the putative potyvirus polygonatumkingianum virus 1. Phylogenetic analysis with the definite potyviruses based on the polyprotein sequence showed MMV clustered closest to plum pox virus. The complete genome of MCV comprised of dsRNA1 (1583 bp) and dsRNA2 (1459 bp), encoding the RNA-dependent RNA polymerase (RdRp), and coat protein (CP), respectively. MCV RdRp shared the highest (75.7%) aa sequence identity with the unclassified partitivirus ambrosia cryptic virus 2, and 59.0%, 57.1%, 56.1%, 54.5% and 33.7% with the corresponding region of the definite delta-partitiviruses, pepper cryptic virus 2, beet cryptic virus 3, beet cryptic virus 2, pepper cryptic virus 1 and fig cryptic virus, respectively. Phylogenetic analysis based on the RdRp aa sequence showed MCV clustered into the delta-partitivirus group. These findings enriched our knowledge of viruses infecting marigold, but the association of the observed symptom and the identified viruses and the biological characterization of the new viruses should be further investigated.


2009 ◽  
Vol 37 (4) ◽  
pp. 375-379 ◽  
Author(s):  
Tombisana Thokchom ◽  
Tanuja Rana ◽  
Vipin Hallan ◽  
Raja Ram ◽  
Aijaz A. Zaidi

Sign in / Sign up

Export Citation Format

Share Document