soybean mosaic virus
Recently Published Documents


TOTAL DOCUMENTS

412
(FIVE YEARS 58)

H-INDEX

40
(FIVE YEARS 4)

2022 ◽  
Author(s):  
Tongtong Jin ◽  
Jinlong Yin ◽  
Song Xue ◽  
Bowen Li ◽  
Tingxuan Zong ◽  
...  

Soybean mosaic virus (SMV) is one of the most devastating viral pathogens in Glycine max (L.) Merr (soybean). Twenty-two SMV strains (SC1-SC22) isolated in China were identified based on their responses to ten soybean cultivars. By using the F2-derived F3 (F2:3) and recombinant inbred line (RIL) populations of resistant Soybean cultivar (cv.) Kefeng No.1 × susceptible cv. Nannong 1138-2, we localized the gene mediating resistant to SMV-SC3 strain to a 90 kb interval on chromosome 2 in Kefeng No.1. Bean pod mottle vi-rus (BPMV)-induced gene silencing (VIGS) were used to study the gene function of candidate genes in the mapping interval and revealed that an recombinant gene, later named as Rsc3K, caused by internal deletion of a genomic DNA fragement in Kefeng No.1, is the resistant gene to SMV-SC3. By shuffling genes between avirulent isolate SC3 and avirulent SMV isolate 1129, we found that P3 is the virulence determinant causing resistance on Kefeng No.1. We showed the interaction between Rsc3K and P3 by the yeast two-hybrid (Y2H) and bimolecular fluorescent complementation (BiFC) assays. In conclusion, this study demonstrated that Rsc3K plays a crucial role in resistance of Kefeng No.1 to SMV-SC3 by direct interaction with viral protein P3.


2021 ◽  
Vol 12 ◽  
Author(s):  
Hua Jiang ◽  
Kai Li ◽  
Junyi Gai

Soybean mosaic virus (SMV) is a prevalent pathogen of soybean (Glycine max). Pyramiding multiple SMV-resistance genes into one individual is tedious and difficult, and even if successful, the obtained multiple resistance might be broken by pathogen mutation, while targeting viral genome via host-induced gene silencing (HIGS) has potential to explore broad-spectrum resistance (BSR) to SMV. We identified five conserved target fragments (CTFs) from S1 to S5 using multiple sequence alignment of 30 SMV genome sequences and assembled the corresponding target-inverted-repeat constructs (TIRs) from S1-TIR to S5-TIR. Since the inefficiency of soybean genetic transformation hinders the function verification of batch TIRs in SMV-resistance, the Nicotiana benthamiana-chimeric-SMV and N. benthamiana-pSMV-GUS pathosystems combined with Agrobacterium-mediated transient expression assays were invented and used to test the efficacy of these TIRs. From that, S1-TIR assembled from 462 bp CTF-S1 with 92% conservation rate performed its best on inhibiting SMV multiplication. Accordingly, S1-TIR was transformed into SMV-susceptible soybean NN1138-2, the resistant-healthy transgenic T1-plants were then picked out via detached-leaf inoculation assay with the stock-plants continued for progeny reproduction (T1 dual-utilization). All the four T3 transgenic progenies showed immunity to all the inoculated 11 SMV strains under individual or mixed inoculation, achieving a strong BSR. Thus, optimizing target for HIGS via transient N. benthamiana-chimeric-SMV and N. benthamiana-pSMV-GUS assays is crucial to drive robust resistance to SMV in soybean and the transgenic S1-TIR-lines will be a potential breeding source for SMV control in field.


2021 ◽  
Author(s):  
Qiuyan Ren ◽  
Hua Jiang ◽  
Wenyang Xiang ◽  
Yang Nie ◽  
Song Xue ◽  
...  

2021 ◽  
Vol 22 (21) ◽  
pp. 11329
Author(s):  
Hua Jiang ◽  
Shengyu Gu ◽  
Kai Li ◽  
Junyi Gai

TGA transcription factors (TFs) exhibit basal resistance in Arabidopsis, but susceptibility to a pathogen attack in tomatoes; however, their roles in soybean (Glycine max) to Soybean mosaic virus (SMV) are unknown. In this study, 27 TGA genes were isolated from a SMV hyper-susceptible soybean NN1138-2, designated GmTGA1~GmTGA27, which were clustered into seven phylogenetic groups. The expression profiles of GmTGAs showed that the highly expressed genes were mainly in Groups I, II, and VII under non-induction conditions, while out of the 27 GmTGAs, 19 responded to SMV-induction. Interestingly, in further transient N. benthamiana-SMV pathosystem assay, all the 19 GmTGAs overexpressed did not promote SMV infection in inoculated leaves, but they exhibited basal resistance except one without function. Among the 18 functional ones, GmTGA8 and GmTGA19, with similar motif distribution, nuclear localization sequence and interaction proteins, showed a rapid response to SMV infection and performed better than the others in inhibiting SMV multiplication. This finding suggested that GmTGA TFs may support basal resistance to SMV even from a hyper-susceptible source. What the mechanism of the genes (GmTGA8, GmTGA19, etc.) with basal resistance to SMV is and what their potential for the future improvement of resistance to SMV in soybeans is, are to be explored.


Viruses ◽  
2021 ◽  
Vol 13 (10) ◽  
pp. 2032
Author(s):  
Pengfei Diao ◽  
Hongyu Sun ◽  
Zhuo Bao ◽  
Wenxia Li ◽  
Niu Niu ◽  
...  

Most of R (resistance) genes encode the protein containing NBS-LRR (nucleotide binding site and leucine-rich repeat) domains. Here, N. benthamiana plants were used for transient expression assays at 3–4 weeks of age. We identified a TNL (TIR-NBS-LRR) encoding gene GmRUN1 that was resistant to both soybean mosaic virus (SMV) and tobacco mosaic virus (TMV). Truncation analysis indicated the importance of all three canonical domains for GmRUN1-mediated antiviral activity. Promoter-GUS analysis showed that GmRUN1 expression is inducible by both salicylic acid (SA) and a transcription factor GmDREB3 via the cis-elements as-1 and ERE (ethylene response element), which are present in its promoter region. Interestingly, GmRUN1 gDNA (genomic DNA) shows higher viral resistance than its cDNA (complementary DNA), indicating the existence of intron-mediated enhancement (IME) for GmRUN1 regulation. We provided evidence that intron2 of GmRUN1 increased the mRNA level of native gene GmRUN1, a soybean antiviral gene SRC7 and also a reporter gene Luciferase, indicating the general transcriptional enhancement of intron2 in different genes. In summary, we identified an antiviral TNL type soybean gene GmRUN1, expression of which was regulated at different layers. The investigation of GmRUN1 gene regulatory network would help to explore the mechanism underlying soybean-SMV interactions.


2021 ◽  
Author(s):  
Bowen Li ◽  
Adhimoolam Karthikeyan ◽  
Liqun Wang ◽  
Jinlong Yin ◽  
Tongtong Jin ◽  
...  

Abstract Background: Soybean mosaic virus (SMV) is the most devastating pathogen of soybean. MicroRNAs (miRNAs) are a class of non-coding RNAs (21-24 nucleotides) and play important roles in regulating defense responses against pathogens. However, miRNA's response to SMV in soybean is not as well documented. Result: In this study, we analyzed 18 miRNA libraries, including three biological replicates from two soybean lines (Resistant and susceptible lines to SMV strain SC3 selected from the near-isogenic lines of Qihuang No. 1× Nannong1138-2) after virus infection at three different time intervals (0 dpi, 7 dpi, and 14 dpi). A total of 1,092 miRNAs, including 608 known miRNAs and 484 novel miRNAs were detected. Differential expression analyses identified the miRNAs responded during soybean-SMV interaction. Then, miRNAs potential target genes were predicted via data mining, and functional annotation was done by Gene Ontology (GO) analysis. Eventually, the expression patterns of several miRNAs validated by quantitative real-time PCR analysis are consistent with sequencing results. Conclusion: We have identified a large number of miRNAs and their target genes and also functional annotations. Our study provides additional information on soybean miRNAs and an insight into the role of miRNAs during SMV-infection in soybean.


Euphytica ◽  
2021 ◽  
Vol 217 (9) ◽  
Author(s):  
Jiahao Chu ◽  
Wenlong Li ◽  
Dongri Piao ◽  
Feng Lin ◽  
Xiaobo Huo ◽  
...  

Sign in / Sign up

Export Citation Format

Share Document