scholarly journals First Report on Pea Seed-borne Mosaic Virus in Hungary

2021 ◽  
Vol 55 (2) ◽  
pp. 161-166
Author(s):  
A. Almási ◽  
R. Boros ◽  
K. Salánki ◽  
B. Barna

One of the most important diseases of pea is caused by Pea seed-borne mosaic virus (PSbMV), which has a relatively wide host range. Since there are few varieties with resistance against the virus, and spraying insecticides is not very effective, the determination of the disease and the pathogen in the seeds is very important. Inoculum prepared from pea seeds showing typical virus symptoms caused very mild symptoms on Chenopodium amaranticolor and C. quinoa, but several chlorotic/necrotic lesions on bean (Phaseolus vulgaris) cv. Scarlet, and systemic symptoms with mosaic and curling of top leaves on bean cv. Maxidor. The detection of the virus was carried out by PCR using universal primers and virus sequence analysis. According to the phylogenetic analysis the PSbMV isolate identified in Hungary belongs to the pathotype P1 and associated with the cluster 2 isolates.

2020 ◽  
Vol 175 ◽  
pp. 01019
Author(s):  
Viktor Saitov ◽  
Vyacheslav Farafonov ◽  
Aleksey Saitov ◽  
Tatyana Malykh

One of the main reserves for increasing grain production is the use for sowing high-quality seeds, purified from impurities and pathogens. One of the main ways to protect the seed from various diseases is dressing. The most effective way to protect seeds from disease is wet dressing with the simultaneous release of grain impurities. To develop a device for cleaning and dressing seeds by density using a wet method, an estimate was made of the minimum height of the fall of the grain needed to overcome the surface tension of the liquid. As objects of research, pea seeds were used, having a shape close to a spherical. Therefore, a spherical grains with a density ρz = (1.15-1.45)·103 kg/m3 and a diameter of 2rz = (3.5-10.9)·10-3 m was taken as a model of pea seed. We study the fall of individual spherical grains with minimal (2rzmin = 3.5·10-3 m) and maximum (2rzmax. = 10.9·10-3 m)) linear dimensions that have a density ρz = 1.15; 1.25; 1.35 and 1.45·103 kg/m3. Drop occurs on the surface of the water (ρzh = 1.0·103 kg/m3) and the aqueous solution of the etchant (ρzh = 1.03; 1.06; 1.09; 1.12 and 1.15·103 kg/m3), with Corresponding coefficients σ of surface tension (0.0727; 0.0755; 0.0771; 0.0786; 0.0801, 0.0816 N/m) and hydrodynamic drag coefficients c = 0.4 (0.5 for ρzh = 1.12·103 and 1.15·103 kg/m3). The process of dressing grain is considered at a temperature of 20 °C. It was established that the minimum drop height h to overcome the surface tension of the dressing solution with all spherical grains should be 15.5·10-3 m.


1979 ◽  
Vol 59 (1) ◽  
pp. 171-175 ◽  
Author(s):  
S. T. ALI-KHAN ◽  
R. C. ZIMMER

Pea seed-borne mosaic virus (PSbMV) was first identified in Canadian field pea (Pisum sativum L.) breeding lines in 1974. Since then, an extensive program has been underway to eradicate this virus from the breeding lines. At the Morden Research Station, nearly 2000 breeding lines were evaluated. The virus was assayed by infectivity tests using the local lesion host Chenopodium amaranticolor, and by a gel immunodiffusion test. PSbMV was detected in 1361 lines. The level of infection within lines varied from 1 to 3%. Due to the restricted extent of the virus in the breeding lines, it was possible to continue the breeding program without a serious loss in germplasm.


1991 ◽  
Vol 42 (3) ◽  
pp. 441 ◽  
Author(s):  
JS Ligat ◽  
D Cartwright ◽  
JW Randles

Five isolates of pea seed-borne mosaic virus (US, S4, S6, Q and T) were compared by host range and symptomatology on 16 Pisum sativum cultivars and lines, 21 lines of Lathyrus and Lens spp. and several indicator species. All selections of Pisum sativum, except cv. Greenfeast, were susceptible to all isolates, but Greenfeast was susceptible to the US isolate. All isolates except T infected the Lathyrus and Lens spp. through mechanical and aphid transmissions. Chenopodium amaranticolor and Vicia faba reacted similarly to all isolates, Phaseolus vulgaris cv. Hawkesbury Wonder reacted to none. The North American isolate (US) was distinguished from the Australian S4, S6, Q, and T isolates by infecting Nicotiana clevelandii and Greenfeast pea. In all cases the highest rate of seed transmission occurred in the largest seed (82-91%) and the lowest was in the smallest seed (27-40%). Infected seed in the largest size classes was lighter in weight than the corresponding uninfected seed. Infected seed in all classes had a significantly lower germination rate than uninfected seed although the greatest reduction in germinability was in the smallest seed. In each size class uninfected seed was heavier than infected seed and germinated better. Two-dimensional immunodiffusion tests showed that precipitin lines between all the isolates and either the US and S6 antisera were confluent with no evidence of spurs. A rapid and sensitive indirect dot-immunobinding assay on nitrocellulose membrane for PSbMV was developed in which non-specific reactions were eliminated by using mannose and glucose in buffers, and healthy plant sap as a blocking agent. The limit of detection of antigen was about 32 ng per sample. Both of the antisera detected antigen in sap extracted from peas infected with the 6 PSbMV isolates, originating from the USA, Australia, New Zealand and Denmark and all isolates were detected at similar antiserum dilution endpoints.


Plant Disease ◽  
2009 ◽  
Vol 93 (3) ◽  
pp. 319-319 ◽  
Author(s):  
N. L. Robertson ◽  
C. J. Coyne

Lupine accessions from the Cool Season Food Legume Seed Collection are grown for seed regenerations in Pullman, WA by the Agricultural Research Service, Western Regional Plant Introduction Station. Selected seed was germinated in the greenhouse and assayed by indirect ELISA using antiserum for potyvirus group detection (Agdia, Inc., Elkhart, IN). Healthy transplants were grown for seed collection on outside plots. In July of 2005, more than 90% of 307 Lupinus luteus L. transplants developed severe yellowing, necrosis, and stunting with an estimated 5% plant death. Plants were heavily infested with aphids and leaf sap was serologically positive for potyvirus. Partially purified virus preparations from infected plants contained filamentous particles and a 35-kDa protein that reacted with universal potyvirus antiserum on western blots. Reverse transcription (RT)-PCR using potyvirus universal primers (2) and cDNA derived from virion RNA generated a ~1.7-kbp product that was cloned and sequenced. The sequenced portion of the genomic RNA contained 1,610 nucleotides (nt) on its 3′-terminus (GenBank Accession No. EU144223) that included a partial nuclear inclusion protein, NIb, (1 to 637 nt) with the conserved amino acid (aa) replicase motif GDD (131 to 139 nt), the coat protein (CP) gene of 821 nt (638 to 1,459 nt), and a 171-nt untranslated region (1,460 to 1,630 nt) attached to a poly(A)tail. The CP sequence contained a NAG motif instead of the DAG motif commonly associated with aphid transmission. Searches in the NCBI GenBank database revealed that the CP aa and nt sequences contained conserved domains with isolates of Bean yellow mosaic virus (BYMV). A pairwise alignment (ClustalX) (4) of the CP aa from 20 BYMV isolates with the BYMV-Pullman isolate revealed identities from 96% (BYMV-S, U47033) to 88% (BYMV-MI [X81124)] -MI-NAT [AF434661]). This meets the species demarcation criteria of more than ~80% identity for inclusion with BYMV (1). Virion mechanical inoculations resulted in local lesions on Chenopodium amaranticolor Coste et Reyn and C. quinoa Willd., necrotic blotches on Phaseolus vulgaris L., and yellow spots and systemic movement in L. succulentus Douglas ex. K. Koch, L. texensis ‘Bluebonnet’, and L. texensis ‘Maroon’; BYMV was confirmed by western blots and ELISA. The experimental inoculations represent the first documented report of BYMV in the annual L. succulentus and biennial L. texensis species. Since BYMV is seedborne and transmitted by many aphid species (3), it is possible that several lupine transplants escaped potyvirus detection, and secondary transmission of BYMV to plants occurred by aphids. During the 1950s, BYMV was confirmed in several annual lupines grown as crops in the southeastern United States (3). To our knowledge, this is the first report of BYMV occurring naturally in a lupine species in Washington. BYMV is a destructive virus to lupine species worldwide and has a wide host range in Fabaceae. This research directly contributes toward the maintenance of virus-free lupine seed for distribution to scientists focusing on lupine research. References: (1) P. H. Berger et al. Family Potyviridae. Page 819 in: Virus Taxonomy: Eighth Report of the ICTV. C. M. Fauquet et al. eds., 2005. (2) J. Chen et al. Arch. Virol. 146:757, 2001. (3) R. A. C. Jones and G. D. Mclean, Ann. Appl. Biol. 114:609, 1989. (4) J. D. Thompson et al. Nucleic Acids Res. 24:4878, 1997.


1967 ◽  
Vol 45 (8) ◽  
pp. 1285-1295 ◽  
Author(s):  
Humberto F. Dias ◽  
Howard E. Waterworth

Seedlings of Chenopodium amaranticolor and C. quinoa were found to contain a highly infectious, seed-borne virus that may remain latent. Under certain environmental conditions and following abrasion of the leaves with carborundum and water, infected, symptomless young plants develop visible systemic symptoms. The presence and erratic behavior of the virus in these species can lead to erroneous identification of the causal agent of diseases of other crops. The virus is restricted to the Chenopodiaceae and is similar to Chenopodium mosaic virus (= sowbane mosaic virus) in morphology and in physico-chemical properties. It is serologically related to Chenopodium star mottle virus, to a latent virus isolated from apple in the USA and, by inference, to Chenopodium mosaic virus.


2015 ◽  
Vol 43 (5) ◽  
pp. 615-628 ◽  
Author(s):  
Antonis Giakountis ◽  
Aikaterini Skoufa ◽  
Epameinondas I. Paplomatas ◽  
Ioannis S. Tokatlidis ◽  
Elisavet K. Chatzivassiliou

Plant Disease ◽  
2005 ◽  
Vol 89 (3) ◽  
pp. 339-339 ◽  
Author(s):  
Sh. Farzadfar ◽  
K. Ohshima ◽  
R. Pourrahim ◽  
A. R. Golnaraghi ◽  
S. Sajedi ◽  
...  

During the summer of 2003, weed samples of Rapistrum rugosum and Sisymbrium loeselii showing severe mosaic, malformation, and stunting were collected from cauliflower fields in Tehran Province of Iran. Using double-antibody sandwich enzyme-linked immunosorbent assay (DAS-ELISA) with specific polyclonal antibodies, the samples were tested for the presence of Beet western yellows virus, Cauliflower mosaic virus, Radish mosaic virus, Turnip crinkle virus, Turnip mosaic virus (TuMV) (DSMZ, Braunschweig, Germany), Cucumber mosaic virus, and Tobacco mosaic virus (Sanofi Diagnostics Pasteur, Marnes-La-Coquette, France). Leaf extracts were used for mechanical inoculation and they produced chlorotic local lesions on Chenopodium amaranticolor, necrotic lesions on leaves and shoot apex necrosis on Nicotiana glutinosa, leaf deformation, mosaic, and stunting on Petunia hybrida, and severe mosaic, distortion, and stunting on Brassica rapa. These symptoms were similar to those that were described previously for TuMV (4). ELISA results showed that the original leaf samples and inoculated indicator plants reacted positively with TuMV antibodies, but not with antibodies for any of the other viruses listed above. Also, reverse transcription-polymerase chain reaction of total RNA extracted from the collected leaf samples using the universal primers for potyviruses (3) resulted in the amplification of two fragments of the expected sizes, approximately 700 and 1,700 bp. TuMV, a member of the genus Potyvirus in the family Potyviridae, is transmitted by aphids in a nonpersistent manner (4). This virus is geographically widespread with a wide host range that can infect 318 species in 156 genera of 43 plant families including, Brassicaceae, Chenopodiaceae, Asteraceae, Cucurbitaceae, and Solanaceae (2,4). R. rugosum and S. loeselii, two annual or biennial plants in the Brassicaceae family, were common and widely distributed in the fields surveyed. The presence of TuMV-infected weed hosts in cauliflower fields may impact disease management strategies. TuMV was first observed on stock plants (Matthiola sp.) in Iran (1). To our knowledge, this is the first report of natural occurrence of TuMV on weed hosts in Iran. References: (1) M. Bahar et al. Iran. J. Plant Pathol. 21:11, 1985. (2) J. R. Edwardson and R. G. Christie. The potyvirus group. Fla. Agric. Exp. Stn. Monogr. Ser. No. 16, 1991. (3) A. Gibbs and A. Mackenzie. J. Virol. Methods 63:9, 1997. (4) J. A. Tomlinson. Turnip mosaic virus. No. 8 in: Descriptions of Plant Viruses. CMI/AAB, Surrey, England, 1970.


Pathogens ◽  
2021 ◽  
Vol 10 (1) ◽  
pp. 53
Author(s):  
Vivek Khanal ◽  
Harrington Wells ◽  
Akhtar Ali

Field information about viruses infecting crops is fundamental for understanding the severity of the effects they cause in plants. To determine the status of cucurbit viruses, surveys were conducted for three consecutive years (2016–2018) in different agricultural districts of Oklahoma. A total of 1331 leaf samples from >90 fields were randomly collected from both symptomatic and asymptomatic cucurbit plants across 11 counties. All samples were tested with the dot-immunobinding assay (DIBA) against the antisera of 10 known viruses. Samples infected with papaya ringspot virus (PRSV-W), watermelon mosaic virus (WMV), zucchini yellow mosaic virus (ZYMV), and cucurbit aphid-borne-yellows virus (CABYV) were also tested by RT-PCR. Of the 10 viruses, PRSV-W was the most widespread, with an overall prevalence of 59.1%, present in all 11 counties, followed by ZYMV (27.6%), in 10 counties, and WMV (20.7%), in seven counties, while the remaining viruses were present sporadically with low incidence. Approximately 42% of the infected samples were positive, with more than one virus indicating a high proportion of mixed infections. CABYV was detected for the first time in Oklahoma, and the phylogenetic analysis of the first complete genome sequence of a CABYV isolate (BL-4) from the US showed a close relationship with Asian isolates.


Viruses ◽  
2021 ◽  
Vol 13 (7) ◽  
pp. 1254
Author(s):  
Hang Yin ◽  
Zheng Dong ◽  
Xulong Wang ◽  
Shuhao Lu ◽  
Fei Xia ◽  
...  

Marigold plants with symptoms of mosaic, crinkle, leaf curl and necrosis were observed and small RNA and ribo-depleted total RNA deep sequencing were conducted to identify the associated viruses. Broad bean wilt virus 2, cucumber mosaic virus, turnip mosaic virus, a new potyvirus tentatively named marigold mosaic virus (MMV) and a new partitivirus named as marigold cryptic virus (MCV) were finally identified. Complete genome sequence analysis showed MMV was 9811 nt in length, encoding a large polyprotein with highest aa sequence identity (57%) with the putative potyvirus polygonatumkingianum virus 1. Phylogenetic analysis with the definite potyviruses based on the polyprotein sequence showed MMV clustered closest to plum pox virus. The complete genome of MCV comprised of dsRNA1 (1583 bp) and dsRNA2 (1459 bp), encoding the RNA-dependent RNA polymerase (RdRp), and coat protein (CP), respectively. MCV RdRp shared the highest (75.7%) aa sequence identity with the unclassified partitivirus ambrosia cryptic virus 2, and 59.0%, 57.1%, 56.1%, 54.5% and 33.7% with the corresponding region of the definite delta-partitiviruses, pepper cryptic virus 2, beet cryptic virus 3, beet cryptic virus 2, pepper cryptic virus 1 and fig cryptic virus, respectively. Phylogenetic analysis based on the RdRp aa sequence showed MCV clustered into the delta-partitivirus group. These findings enriched our knowledge of viruses infecting marigold, but the association of the observed symptom and the identified viruses and the biological characterization of the new viruses should be further investigated.


Author(s):  
Vanessa Vernoud ◽  
Ludivine Lebeigle ◽  
Jocelyn Munier ◽  
Julie Marais ◽  
Myriam Sanchez ◽  
...  

Abstract The use of pulses as ingredients for the production of food products rich in plant proteins is increasing. However, protein fractions prepared from pea or other pulses contain significant amounts of saponins, glycosylated triterpenes which can impart an undesirable bitter taste when used as an ingredient in foodstuffs. In this paper, we describe the identification and characterization of a gene involved in saponin biosynthesis during pea seed development, by screening mutants obtained from two Pisum sativum TILLING (Targeting Induced Local Lesions in Genomes) populations in two different genetic backgrounds. The mutations studied are located in a gene designated PsBAS1 (β-amyrin synthase1) which is highly expressed in maturing pea seeds and which encodes a protein previously shown to correspond to an active β-amyrin synthase. The first allele is a nonsense mutation, while the second mutation is located in a splice site and gives rise to a mis-spliced transcript encoding a truncated, non-functional protein. The homozygous mutant seeds accumulated virtually no saponin without affecting seed nutritional or physiological quality. Interestingly, BAS1 appears to control saponin accumulation in all other tissues of the plant examined. These lines represent a first step in the development of pea varieties lacking bitterness off-flavours in their seeds. Our work also shows that TILLING populations in different genetic backgrounds represent valuable genetic resources for both crop improvement and functional genomics.


Sign in / Sign up

Export Citation Format

Share Document