Design and Modeling of Polarization-Conversion Based all-Optical Basic Logic Gates in a Single Silicon Ring Resonator

Silicon ◽  
2019 ◽  
Vol 12 (6) ◽  
pp. 1279-1288 ◽  
Author(s):  
Gaurav Kumar Bharti ◽  
Madan Pal Singh ◽  
Jayanta Kumar Rakshit
Author(s):  
Jayanta Kumar Rakshit ◽  
Gaurav Kumar Bharti

The realization of all-optical polarization switch and all-optical logic gates based on polarization-conversion on single silicon micro-ring resonator (MRR) is demonstrated. By adjusting the mode state of the input source as well as the pump light, the all-optical polarization switch, and hence, all-optical NOT, OR/NOR. AND-NAND logic gates are realized. The design is ultra-compact, ultrafast, and less optical power is required for all-optical polarization-conversion-based switch and logic gates, respectively. The MRR also shows outstanding performance as its Q (quality) factor is very high. The design is robust, simple, stable, easy-to-fabricate, and silicon-on-insulator (SOI) compatible. The structure is compatible for interconnects and capable for integrating in electronics as well as in plasmonics circuits.


2021 ◽  
Vol 0 (0) ◽  
Author(s):  
Hassan Mamnoon-Sofiani ◽  
Sahel Javahernia

Abstract All optical logic gates are building blocks for all optical data processors. One way of designing optical logic gates is using threshold switching which can be realized by combining an optical resonator with nonlinear Kerr effect. In this paper we showed that a novel structure consisting of nonlinear photonic crystal ring resonator which can be used for realizing optical NAND/NOR and majority gates. The delay time of the proposed NAND/NOR and majority gates are 2.5 ps and 1.5 ps respectively. Finite difference time domain and plane wave expansion methods were used for simulating the proposed optical logic gates. The total footprint of the proposed structure is about 988 μm2.


Frequenz ◽  
2021 ◽  
Vol 0 (0) ◽  
Author(s):  
Mohamed Salah Bouaouina ◽  
Mohamed Redha Lebbal ◽  
Mohamed Bouchemat ◽  
Touraya Bouchemat

Abstract Nowadays, the development of optical telecommunication systems requires more efficient all-optical elements appreciation to their high data transmission speeds and reduced electromagnetic interferences. In this work, our objective is to attest by simulation a design of an optical switch using 2D photonic crystals from polystyrene, an organic polymeric material with high Kerr non-linearity. This excellent ultra-fast switching leads us to the exploited in the construction of two new structures of all-optical AND/NAND and OR/NOR logic gates. These structures based on non-linear ring resonator NRR of different radius in order to operate a telecom wavelength of 1550.3 µm using RSoft (Full-Wave) software. The average contrast intensity is between 15.52 and 23.42 dB and low delay time varied from 20 fs to 5.0 ps. Hence, resulting a very high output signal for ON-switching (82–130% of P in) and a weak signal for OFF-switching (0.2–7% of P in) through a minimum threshold power around of 1.2 mW/μm2.


2018 ◽  
Vol 65 (21) ◽  
pp. 2326-2331 ◽  
Author(s):  
Zahra Mohebbi ◽  
Najmeh Nozhat ◽  
Maryam Khodadadi

2019 ◽  
Vol 0 (0) ◽  
Author(s):  
Ankur Saharia ◽  
Ashish Kumar Ghunawat ◽  
Manish Tiwari ◽  
Anton V. Bourdine ◽  
Vladimir A. Burdin ◽  
...  

AbstractAll-optical processor capable of processing optical bits has been a long-standing goal of photonics. In this paper, we report the results obtained by numerical simulations regarding the designing of an all-optical combinational circuit of an adder and subtractor circuits based on Si3N4 microring resonators. The designs of combinational circuit like adders and subtractor based on the use of all-optical basic logic gates are discussed while presenting the numerically simulated results. Extinction ratios of 5.2 dB, 3.5 dB and 2.7 dB are obtained for the half adder, full adder and half subtractor, respectively.


Sign in / Sign up

Export Citation Format

Share Document