scholarly journals Lipid Production from Crude Glycerol by Newly Isolated Oleaginous Yeasts: Strain Selection, Molecular Identification and Fatty Acid Analysis

Author(s):  
Derya Berikten ◽  
Emir Zafer Hoşgün ◽  
Ayşe Gökdal Otuzbiroğlu ◽  
Berrin Bozan ◽  
Merih Kıvanç
2015 ◽  
Vol 118 (4) ◽  
pp. 911-927 ◽  
Author(s):  
S.S. Tchakouteu ◽  
O. Kalantzi ◽  
Chr. Gardeli ◽  
A.A. Koutinas ◽  
G. Aggelis ◽  
...  

2015 ◽  
Vol 119 (12) ◽  
pp. 1194-1204 ◽  
Author(s):  
Pirapan Polburee ◽  
Wichien Yongmanitchai ◽  
Noppon Lertwattanasakul ◽  
Takao Ohashi ◽  
Kazuhito Fujiyama ◽  
...  

2020 ◽  
Author(s):  
Mikolaj Chmielarz ◽  
Johanna Blomqvist ◽  
Sabine Sampels ◽  
Mats Sandgren ◽  
Volkmar Passoth

Abstract Background: Crude glycerol (CG) and hemicellulose hydrolysate (HH) are low- value side-products of biodiesel transesterification and pulp- and paper industry, respectively, which can be converted to microbial lipids by oleaginous yeasts. This study aimed to test the ability of oleaginous yeasts to utilise CG and HH and mixtures of them as carbon source. Results: Eleven out of 27 tested strains of oleaginous yeast species were able to grow in plate tests on CG as sole carbon source. Among them, only one ascomycetous strain, belonging to Lipomyces starkeyi , was identified, the other 10 strains were Rhodotorula spec. When yeasts were cultivated in mixed CG/ HH medium, we observed an activation of glycerol conversion in the Rhodotorula strains, but not in L. starkeyi . Two strains - Rhodotorula toruloides CBS 14 and Rhodotorula glutinis CBS 3044 were further tested in controlled fermentations in bioreactors in different mixtures of CG and HH. The highest measured average biomass and lipid concentration were achieved with R. toruloides in 40% HH medium mixed with 60 g/L CG - 19.4 g/L and 10.6 g/L, respectively, with a lipid yield of 0.22 g lipids per consumed g of carbon source. Fatty acid composition was similar to other R. toruloides strains and comparable to that of vegetable oils. Conclusions: There were big strain differences in the ability to convert CG to lipids, as only few of the tested strains were able to grow. Lipid production rates and yields showed that mixing GC and HH have a stimulating effect on lipid accumulation resulting in shortened fermentation time to reach maximum lipid concentration, which provides a new perspective on converting these low- value compounds to biolipids.


2016 ◽  
Vol 182 (2) ◽  
pp. 495-510 ◽  
Author(s):  
Li-ping Liu ◽  
Yang Hu ◽  
Wen-yong Lou ◽  
Ning Li ◽  
Hong Wu ◽  
...  

2021 ◽  
Vol 14 (1) ◽  
Author(s):  
Mikolaj Chmielarz ◽  
Johanna Blomqvist ◽  
Sabine Sampels ◽  
Mats Sandgren ◽  
Volkmar Passoth

Abstract Background Crude glycerol (CG) and hemicellulose hydrolysate (HH) are low—value side-products of biodiesel transesterification and pulp—and paper industry or lignocellulosic ethanol production, respectively, which can be converted to microbial lipids by oleaginous yeasts. This study aimed to test the ability of oleaginous yeasts to utilise CG and HH and mixtures of them as carbon source. Results Eleven out of 27 tested strains of oleaginous yeast species were able to grow in plate tests on CG as sole carbon source. Among them, only one ascomycetous strain, belonging to Lipomyces starkeyi, was identified, the other 10 strains were Rhodotorula spec. When yeasts were cultivated in mixed CG/ HH medium, we observed an activation of glycerol conversion in the Rhodotorula strains, but not in L. starkeyi. Two strains—Rhodotorula toruloides CBS 14 and Rhodotorula glutinis CBS 3044 were further tested in controlled fermentations in bioreactors in different mixtures of CG and HH. The highest measured average biomass and lipid concentration were achieved with R. toruloides in 10% HH medium mixed with 55 g/L CG—19.4 g/L and 10.6 g/L, respectively, with a lipid yield of 0.25 g lipids per consumed g of carbon source. Fatty acid composition was similar to other R. toruloides strains and comparable to that of vegetable oils. Conclusions There were big strain differences in the ability to convert CG to lipids, as only few of the tested strains were able to grow. Lipid production rates and yields showed that mixing GC and HH have a stimulating effect on lipid accumulation in R. toruloides and R. glutinis resulting in shortened fermentation time to reach maximum lipid concentration, which provides a new perspective on converting these low-value compounds to microbial lipids.


2021 ◽  
Author(s):  
Derya Berikten ◽  
Emir Zafer Hosgun ◽  
Ayşe Gökdal Otuzbiroğlu ◽  
Berrin Bozan ◽  
Merih Kıvanç

Abstract Biodiesel is a renewable alternative fuel and glycerol as a main byproduct of the manufacturing process. Lipids could be produced from crude glycerol by using yeasts. The ability of 107 yeast strains to utilize glycerol was screened and 92 of these were selected. 60 strains were determined as a potential for lipid production by Sudan Black B staining. After secondary screening 25 of them showed specific growth rates (OD 600), high biomass production and lipid content. These strains were identified as Pichia cactophila, P. fermentans, P. anomala, Rhodotorula mucilaginosa, R. dairenensis, Clavispora lusitaniae, Saccharomyces cerevisiae, Wickerhamomyces anomalus, Candida glabrata, C. inconspicua, C. albicans, Yarrowia lipolytica with molecular identifications based on ITS and D1/D2 26S rDNA sequences. The results showed that P. cactophila accumulated lipid up to 64.94%, the highest lipid content. C16:0, C18:0, C18:1 and C18:2 essential fatty acids for biodiesel production were detected by GC-MS in the lipids accumulated by all strains. P. cactophila and C. lusitaniae were reported for the first time as lipid-producing yeasts. The results suggest that selected 25 isolates have the ability to grow on crude glycerol and especially P. cactophila produce lipid that has potential use as a feedstock for second generation biodiesel production.


Sign in / Sign up

Export Citation Format

Share Document