hemicellulose hydrolysate
Recently Published Documents


TOTAL DOCUMENTS

82
(FIVE YEARS 17)

H-INDEX

26
(FIVE YEARS 3)

2021 ◽  
Vol 12 (1) ◽  
Author(s):  
Liang Sun ◽  
Jae Won Lee ◽  
Sangdo Yook ◽  
Stephan Lane ◽  
Ziqiao Sun ◽  
...  

AbstractPlant cell wall hydrolysates contain not only sugars but also substantial amounts of acetate, a fermentation inhibitor that hinders bioconversion of lignocellulose. Despite the toxic and non-consumable nature of acetate during glucose metabolism, we demonstrate that acetate can be rapidly co-consumed with xylose by engineered Saccharomyces cerevisiae. The co-consumption leads to a metabolic re-configuration that boosts the synthesis of acetyl-CoA derived bioproducts, including triacetic acid lactone (TAL) and vitamin A, in engineered strains. Notably, by co-feeding xylose and acetate, an enginered strain produces 23.91 g/L TAL with a productivity of 0.29 g/L/h in bioreactor fermentation. This strain also completely converts a hemicellulose hydrolysate of switchgrass into 3.55 g/L TAL. These findings establish a versatile strategy that not only transforms an inhibitor into a valuable substrate but also expands the capacity of acetyl-CoA supply in S. cerevisiae for efficient bioconversion of cellulosic biomass.


2021 ◽  
pp. 125677
Author(s):  
Nagarajan Arumugam ◽  
Thulasinathan Boobalan ◽  
Arivalagan Pugazhendhi ◽  
Alagarsamy Arun ◽  
Muthuramalingam Jothi Basu ◽  
...  

2021 ◽  
pp. 125565
Author(s):  
Taís Mayumi Kuniyoshi ◽  
Carlos Miguel Nóbrega Mendonça ◽  
Viviane Borges Vieira ◽  
Diogo Robl ◽  
Bernadette Dora Gombossy de Melo Franco ◽  
...  

2021 ◽  
Vol 169 ◽  
pp. 107963
Author(s):  
Caroline L. Perez ◽  
Thais S. Milessi ◽  
Juliana P. Sandri ◽  
Maria R. Foulquié-Moreno ◽  
Roberto C. Giordano ◽  
...  

2021 ◽  
Vol 9 (5) ◽  
pp. 888
Author(s):  
Nao Ikeyama ◽  
Mitsuo Sakamoto ◽  
Moriya Ohkuma ◽  
Shigeru Hiramoto ◽  
Jianpeng Wang ◽  
...  

Bamboo hemicellulose hydrolysate (BHH) may possess antihypercholesterolemic activity; however, this activity requires further comprehensive study to assess the prebiotic mechanisms of BHH in vivo. Here, we used high-throughput 16S rRNA gene sequencing to preliminarily investigate the correlations between BHH and the fecal microbiomes of three groups of mice fed either a normal diet, a high-fat diet, or a high-fat diet supplemented with 5% BHH for 5 weeks. Alpha diversity (within community) was nonsignificant for all groups; however, beta diversity analysis among communities showed that 5% BHH suppressed the significant changes induced by the high-fat diet. The Firmicutes/Bacteroidetes ratio, the family S24-7 within the order Bacteroidales, the family Lachnospiraceae and several cellulolytic taxa were slightly ameliorated in the BHH group. These results indicated that BHH supplementation influenced the gut bacterial community and suppressed the high-fat diet-induced alterations. Additionally, BHH significantly lowered the serum cholesterol levels and fecal pH. Improving short-chain fatty acid production for all of the bacterial communities in the mouse guts may induce this effect. Thus, the prebiotic potential of BHH should be evaluated considering the gut microbial communities and their interactions.


2021 ◽  
Vol 14 (1) ◽  
Author(s):  
Mikolaj Chmielarz ◽  
Johanna Blomqvist ◽  
Sabine Sampels ◽  
Mats Sandgren ◽  
Volkmar Passoth

Abstract Background Crude glycerol (CG) and hemicellulose hydrolysate (HH) are low—value side-products of biodiesel transesterification and pulp—and paper industry or lignocellulosic ethanol production, respectively, which can be converted to microbial lipids by oleaginous yeasts. This study aimed to test the ability of oleaginous yeasts to utilise CG and HH and mixtures of them as carbon source. Results Eleven out of 27 tested strains of oleaginous yeast species were able to grow in plate tests on CG as sole carbon source. Among them, only one ascomycetous strain, belonging to Lipomyces starkeyi, was identified, the other 10 strains were Rhodotorula spec. When yeasts were cultivated in mixed CG/ HH medium, we observed an activation of glycerol conversion in the Rhodotorula strains, but not in L. starkeyi. Two strains—Rhodotorula toruloides CBS 14 and Rhodotorula glutinis CBS 3044 were further tested in controlled fermentations in bioreactors in different mixtures of CG and HH. The highest measured average biomass and lipid concentration were achieved with R. toruloides in 10% HH medium mixed with 55 g/L CG—19.4 g/L and 10.6 g/L, respectively, with a lipid yield of 0.25 g lipids per consumed g of carbon source. Fatty acid composition was similar to other R. toruloides strains and comparable to that of vegetable oils. Conclusions There were big strain differences in the ability to convert CG to lipids, as only few of the tested strains were able to grow. Lipid production rates and yields showed that mixing GC and HH have a stimulating effect on lipid accumulation in R. toruloides and R. glutinis resulting in shortened fermentation time to reach maximum lipid concentration, which provides a new perspective on converting these low-value compounds to microbial lipids.


2020 ◽  
Author(s):  
Mikolaj Chmielarz ◽  
Johanna Blomqvist ◽  
Sabine Sampels ◽  
Mats Sandgren ◽  
Volkmar Passoth

Abstract Background: Crude glycerol (CG) and hemicellulose hydrolysate (HH) are low- value side-products of biodiesel transesterification and pulp- and paper industry, respectively, which can be converted to microbial lipids by oleaginous yeasts. This study aimed to test the ability of oleaginous yeasts to utilise CG and HH and mixtures of them as carbon source. Results: Eleven out of 27 tested strains of oleaginous yeast species were able to grow in plate tests on CG as sole carbon source. Among them, only one ascomycetous strain, belonging to Lipomyces starkeyi , was identified, the other 10 strains were Rhodotorula spec. When yeasts were cultivated in mixed CG/ HH medium, we observed an activation of glycerol conversion in the Rhodotorula strains, but not in L. starkeyi . Two strains - Rhodotorula toruloides CBS 14 and Rhodotorula glutinis CBS 3044 were further tested in controlled fermentations in bioreactors in different mixtures of CG and HH. The highest measured average biomass and lipid concentration were achieved with R. toruloides in 40% HH medium mixed with 60 g/L CG - 19.4 g/L and 10.6 g/L, respectively, with a lipid yield of 0.22 g lipids per consumed g of carbon source. Fatty acid composition was similar to other R. toruloides strains and comparable to that of vegetable oils. Conclusions: There were big strain differences in the ability to convert CG to lipids, as only few of the tested strains were able to grow. Lipid production rates and yields showed that mixing GC and HH have a stimulating effect on lipid accumulation resulting in shortened fermentation time to reach maximum lipid concentration, which provides a new perspective on converting these low- value compounds to biolipids.


2020 ◽  
Vol 155 ◽  
pp. 112837 ◽  
Author(s):  
Suranny Jiménez Chacón ◽  
Gabriela Matias ◽  
Carla Ferreira dos Santos Vieira ◽  
Thaddeus Chukwuemeka Ezeji ◽  
Rubens Maciel Filho ◽  
...  

Sign in / Sign up

Export Citation Format

Share Document