microbial lipids
Recently Published Documents


TOTAL DOCUMENTS

141
(FIVE YEARS 53)

H-INDEX

24
(FIVE YEARS 4)

2022 ◽  
Author(s):  
Laura Burchill ◽  
Spencer J Williams

Microbes produce a rich array of lipidic species that through their location in the cell wall and ability to mingle with host lipids represent a privileged class of immune-active molecules....


2022 ◽  
pp. 29-66
Author(s):  
Ashutosh Kumar Pandey ◽  
Ranjna Sirohi ◽  
Vivek Kumar Gaur ◽  
Kritika Pandey ◽  
Aswathy Udayan ◽  
...  

2021 ◽  
Vol 14 (1) ◽  
Author(s):  
Wang Ma ◽  
Yu-Zhou Wang ◽  
Fang-Tong Nong ◽  
Fei Du ◽  
Ying-Shuang Xu ◽  
...  

Abstract Background The oleaginous microorganism Schizochytrium sp. is widely used in scientific research and commercial lipid production processes. However, low glucose-to-lipid conversion rate (GLCR) and low lipid productivity of Schizochytrium sp. restrict the feasibility of its use. Results Orlistat is a lipase inhibitor, which avoids triacylglycerols (TAGs) from hydrolysis by lipase. TAGs are the main storage forms of fatty acids in Schizochytrium sp. In this study, the usage of orlistat increased the GLCR by 21.88% in the middle stage of fermentation. Whereas the productivity of lipid increased 1.34 times reaching 0.73 g/L/h, the saturated fatty acid and polyunsaturated fatty acid yield increased from 21.2 and 39.1 to 34.9 and 48.5 g/L, respectively, indicating the advantages of using a lipase inhibitor in microbial lipids fermentation. Similarly, the system was also successful in Thraustochytrid Aurantiochytrium. The metabolic regulatory mechanisms stimulated by orlistat in Schizochytrium sp. were further investigated using transcriptomics and metabolomics. The results showed that orlistat redistributed carbon allocation and enhanced the energy supply when inhibiting the TAGs’ degradation pathway. Therefore, lipase in Schizochytrium sp. prefers to hydrolyze saturated fatty acid TAGs into the β-oxidation pathway. Conclusions This study provides a simple and effective approach to improve lipid production, and makes us understand the mechanism of lipid accumulation and decomposition in Schizochytrium sp., offering new guidance for the exploitation of oleaginous microorganisms.


2021 ◽  
Vol 12 ◽  
Author(s):  
Xiuwen Wang ◽  
Hassan Mohamed ◽  
Yonghong Bao ◽  
Chen Wu ◽  
Wenyue Shi ◽  
...  

The fungus, Mucor lusitanicus, is of great interest for microbial lipids, because of its ability to accumulate intracellular lipid using various carbon sources. The biosynthesis of fatty acid requires the reducing power NADPH, and acetyl-CoA, which is produced by the cleavage of citrate in cytosol. In this study, we employed different strategies to increase lipid accumulation in the low lipid-producing fungi via metabolic engineering technology. Hence, we constructed the engineered strain of M. lusitanicus CBS 277.49 by using malate transporter (mt) and 2-oxoglutarate: malate antiporter (sodit) from M. circinelloides WJ11. In comparison with the control strain, the lipid content of the overexpressed strains of mt and sodit genes were increased by 24.6 and 33.8%, respectively. These results showed that mt and sodit can affect the distribution of malate in mitochondria and cytosol, provide the substrates for the synthesis of citrate in the mitochondria, and accelerate the transfer of citrate from mitochondria to cytosol, which could play a significant regulatory role in fatty acid synthesis leading to lipids over accumulation.


2021 ◽  
Vol 9 (11) ◽  
pp. 2295
Author(s):  
Andrea Němcová ◽  
Martin Szotkowski ◽  
Ota Samek ◽  
Linda Cagáňová ◽  
Matthias Sipiczki ◽  
...  

Oleogenic yeasts are characterized by the ability to accumulate increased amounts of lipids under certain conditions. These microbial lipids differ in their fatty acid composition, which allows them to be widely used in the biotechnology industry. The interest of biotechnologists is closely linked to the rising prices of fossil fuels in recent years. Their negative environmental impact is caused by significantly increased demand for biodiesel. The composition of microbial lipids is very similar to vegetable oils, which provides great potential for use in the production of biodiesel. In addition, some oleogenic microorganisms are capable of producing lipids with a high proportion of unsaturated fatty acids. The presented paper’s main aim was to study the production of lipids and lipid substances by yeasts of the genus Metschnikowia, to cultivate crude waste animal fat to study its utilization by yeasts, and to apply the idea of circular economy in the biotechnology of Metschnikowia yeasts. The work focuses on the influence of various stress factors in the cultivation process, such as reduced temperature or nutritional stress through the use of various waste substrates, together with manipulating the ratio of carbon and nitrogen sources in the medium. Yeast production properties were monitored by several instrumental techniques, including gas chromatography and Raman spectroscopy. The amount of lipids and in particular the fatty acid composition varied depending on the strains studied and the culture conditions used. The ability of yeast to produce significant amounts of unsaturated fatty acids was also demonstrated in the work. The most suitable substrate for lipid production was a medium containing glycerol, where the amount of accumulated lipids in the yeast M. pulcherrima 1232 was up to 36%. In our work, the crude animal fat was used for the production of high-value lipids, which to the best of our knowledge is a new result. Moreover, quantitative screening of lipase enzyme activity cultivated on animal fat substrate on selected yeasts of the genus Metschnikowia was performed. We found that for the yeast utilizing glycerol, animal fat seems to be an excellent source of carbon. Therefore, the yeast conversion of crude processed animal fat to value-added products is a valuable process for the biotechnology and food industry.


2021 ◽  
pp. 126294
Author(s):  
Le Zhang ◽  
Jonathan T.E. Lee ◽  
Yong Sik Ok ◽  
Yanjun Dai ◽  
Yen Wah Tong Resource

Author(s):  
Rupal Gupta ◽  
Srijoni Banerjee ◽  
Soumya Pandit ◽  
Piyush Kumar Gupta ◽  
Abhilasha Singh Mathriya ◽  
...  

Author(s):  
Saeed M. Ghazani ◽  
Alejandro G. Marangoni
Keyword(s):  

Energy ◽  
2021 ◽  
pp. 122390
Author(s):  
Milos Milovancevic ◽  
Yousef Zandi ◽  
Abouzar Rahimi ◽  
Nebojša Denić ◽  
Vuk Vujović ◽  
...  

Sign in / Sign up

Export Citation Format

Share Document