Classification of 3D terracotta warriors fragments based on geospatial and texture information

Author(s):  
Kang Yang ◽  
Xin Cao ◽  
Guohua Geng ◽  
Kang Li ◽  
Mingquan Zhou
Keyword(s):  
Polar Record ◽  
1995 ◽  
Vol 31 (177) ◽  
pp. 135-146 ◽  
Author(s):  
D.M. Smith ◽  
E.C. Barrett ◽  
J.C. Scott

AbstractThis paper describes the development of a practical algorithm for the classification of sea-ice types from ERS-1 synthetic aperture radar (SAR) data. The algorithm was based on a combination of grey level and texture information in order to overcome ambiguous grey level values of different ice types. The problem of calculating texture parameters for windows containing more than one ice type was overcome by first segmenting the image so that only pixels from the same segment were included in the calculation of the texture measure. The segmentation procedure was based on the iterative application of a speckle noise reduction filter, and was thus crucially dependent on the ability of such a filter to smooth out noise without destroying edges and fine features. In order to achieve this, a modification to the sigma filter of Lee (1983b) was developed; it out-performed the sigma filter for a model problem. Two ERS-1 SAR scenes of the marginal ice zone east of Spitsbergen in March 1992 were analysed by calculating values of grey level and range for different ice types contained within raw data extracts. Although the grey levels of some of the ice types overlapped, most of the ambiguity was removed through the additional use of range. It was also necessary to test for the wave-like appearance of open water. The classification scheme was demonstrated to identify correctly most of the grease/new ice, first-year ice, multiyear ice, rough ice, pancake ice, and open water in the two SAR scenes, although there was some misclassification of open water as first-year ice.


2005 ◽  
Vol 10 (3) ◽  
pp. 034014 ◽  
Author(s):  
Begoña Acha ◽  
Carmen Serrano ◽  
José I. Acha ◽  
Laura M. Roa
Keyword(s):  

1997 ◽  
Author(s):  
Harold H. Szu ◽  
Jacqueline Le Moigne ◽  
Nathan S. Netanyahu ◽  
Charles C. Hsu

2014 ◽  
Vol 989-994 ◽  
pp. 3885-3888 ◽  
Author(s):  
Yue Mei Ren ◽  
Yan Ning Zhang ◽  
Wei Wei

Hyperspectral images (HSI) have rich texture information, so combining texture information and image spectral information can improve the recognition accuracy. Sparse representation has significant success in image classification. In this paper, we propose a new discriminative sparse-based classification framework using spectral data and extended Local Binary Patterns (LBP) texture. Firstly, we propose an extended LBP coding for HSI classification. Then we formulate an optimization problem that combines the objective function of classification with the representation error by sparsity. Furthermore, we use a procedure similar to K-SVD algorithm to learn the discriminative dictionary. The experimental results show that the proposed discriminative spasity-based classification of image including the extended LBP texture outperforms the classical HSI classification algorithms.


1966 ◽  
Vol 24 ◽  
pp. 21-23
Author(s):  
Y. Fujita

We have investigated the spectrograms (dispersion: 8Å/mm) in the photographic infrared region fromλ7500 toλ9000 of some carbon stars obtained by the coudé spectrograph of the 74-inch reflector attached to the Okayama Astrophysical Observatory. The names of the stars investigated are listed in Table 1.


Author(s):  
Gerald Fine ◽  
Azorides R. Morales

For years the separation of carcinoma and sarcoma and the subclassification of sarcomas has been based on the appearance of the tumor cells and their microscopic growth pattern and information derived from certain histochemical and special stains. Although this method of study has produced good agreement among pathologists in the separation of carcinoma from sarcoma, it has given less uniform results in the subclassification of sarcomas. There remain examples of neoplasms of different histogenesis, the classification of which is questionable because of similar cytologic and growth patterns at the light microscopic level; i.e. amelanotic melanoma versus carcinoma and occasionally sarcoma, sarcomas with an epithelial pattern of growth simulating carcinoma, histologically similar mesenchymal tumors of different histogenesis (histiocytoma versus rhabdomyosarcoma, lytic osteogenic sarcoma versus rhabdomyosarcoma), and myxomatous mesenchymal tumors of diverse histogenesis (myxoid rhabdo and liposarcomas, cardiac myxoma, myxoid neurofibroma, etc.)


Sign in / Sign up

Export Citation Format

Share Document