Nonlinear pitch angle control of an onshore wind turbine by considering the aerodynamic nonlinearities and deriving an aeroelastic model

2021 ◽  
Author(s):  
Farshad Golnary ◽  
Hamed Moradi ◽  
K. T. Tse
2012 ◽  
Vol 499 ◽  
pp. 259-264
Author(s):  
Qi Yao ◽  
Ying Xue Yao ◽  
Liang Zhou ◽  
S.Y. Zheng

This paper presents a simulation study of an H-type vertical axis wind turbine. Two dimensional CFD model using sliding mesh technique was generated to help understand aerodynamics performance of this wind turbine. The effect of the pith angle on H-type vertical axis wind turbine was studied based on the computational model. As a result, this wind turbine could get the maximum power coefficient when pitch angle adjusted to a suited angle, furthermore, the effects of pitch angle and azimuth angle on single blade were investigated. The results will provide theoretical supports on study of variable pitch of wind turbine.


Author(s):  
Ali Al-Abadi ◽  
YouJin Kim ◽  
Jin-young Park ◽  
Hyunjin Kang ◽  
Özgür Ertunc ◽  
...  

An optimization method that changes the control strategy of the Horizontal Axis Wind Turbine (HAWT) from passive- to active-pitch has been developed. The method aims to keep the rated power constant by adjusting the blade pitch angle while matching the rotor and the drive torques. The method is applied to an optimized wind turbine model. Further, numerical simulations were performed to validate the developed method and for further investigations of the flow behavior over the blades.


2021 ◽  
Author(s):  
Kewei Xu ◽  
Gecheng Zha

Abstract This paper applies Co-flow Jet (CFJ) active flow control airfoil to a NREL horizontal axis wind turbine for power output improvement. CFJ is a zero-net-mass-flux active flow control method that dramatically increases airfoil lift coefficient and suppresses flow separation at a low energy expenditure. The 3D Reynolds Averaged Navier-Stokes (RANS) equations with one-equation Spalart-Allmaras (SA) turbulence model are solved to simulate the 3D flows of the wind turbines. The baseline wind turbine is the NREL 10.06m diameter phase VI wind turbine and is modified to a CFJ blade by implementing CFJ along the span. The baseline wind turbine performance is validated with the experiment at three wind speeds, 7m/s, 15m/s, and 25m/s. The predicted blade surface pressure distributions and power output agree well with the experimental measurements. The study indicates that the CFJ can enhance the power output at the condition where angle of attack is increased to the level that conventional wind turbine is stalled. At the speed of 7m/s that the NREL turbine is designed to achieve the optimum efficiency at the pitch angle of 3°, the CFJ turbine does not increase the power output. When the pitch angle is reduced by 13° to −10°, the baseline wind turbine is stalled and generates negative power output at 7m/s. But the CFJ wind turbine increases the power output by 12.3% assuming CFJ fan efficiency of 80% at the same wind speed. This is an effective method to extract more power from the wind at all speeds. It is particularly useful at low speeds to decrease cut-in speed and increase power output without exceeding the structure limit. At the freestream velocity of 15m/s and the CFJ momentum coefficient Cμ of 0.23, the net power output is increased by 207.7% assuming the CFJ fan efficiency of 80%, compared to the baseline wind turbine due to the removal of flow separation. The CFJ wind turbine appears to open a door to a new area of wind turbine efficiency improvement and adaptive control for optimal loading.


Author(s):  
R. S. Amano ◽  
Ryan Malloy

The project has been completed, and all of the aforementioned objectives have been achieved. An anemometer has been constructed to measure wind speed, and a wind vane has been built to sense wind direction. An LCD module has been acquired and has been programmed to display the wind speed and its direction. An H-Bridge circuit was used to drive a gear motor that rotated the nacelle toward the windward direction. Finally, the blade pitch angle was controlled by a swash plate mechanism and servo motors installed on the generator itself. A microcontroller has been programmed to optimally control the servo motors and gear motor based on input from the wind vane and anemometer sensors.


Sign in / Sign up

Export Citation Format

Share Document