Numerical study of M2 internal tide generation and propagation in the Luzon Strait

2011 ◽  
Vol 30 (5) ◽  
pp. 23-32 ◽  
Author(s):  
Huan Li ◽  
Dan Song ◽  
Xueen Chen ◽  
Hongbao Qian ◽  
Lin Mu ◽  
...  
2014 ◽  
Vol 119 (8) ◽  
pp. 5434-5448 ◽  
Author(s):  
Zhongxiang Zhao
Keyword(s):  

2014 ◽  
Vol 44 (5) ◽  
pp. 1386-1405 ◽  
Author(s):  
Colette G. Kerry ◽  
Brian S. Powell ◽  
Glenn S. Carter

Abstract This study examines the effects of the subtidal circulation on the generation and propagation of the M2 internal tide in the Philippine Sea using a primitive equation model. Barotropic to baroclinic conversion at the Luzon Strait is found to vary due to the background circulation changes over the generation site and the changing influence of remotely generated internal tides from the Mariana Arc. The varying effect of remotely generated waves results from both changing generation energy levels at the Mariana Arc and variability in the propagation of the internal tides across the Philippine Sea. The magnitude and direction of the depth-integrated baroclinic energy fluxes vary temporally, due to a combination of changing generation, propagation, and dissipation. Spatial patterns of internal tide propagation near the Luzon Strait are influenced by the locations of mesoscale eddies to the east and west of the strait. The results provide insight into the mechanisms of variability of the baroclinic tides and highlight the importance of considering both the remotely generated internal tides and the subtidal dynamics to estimate internal tide energetics.


2020 ◽  
Vol 58 (3) ◽  
pp. 206-218
Author(s):  
Zheng Guo ◽  
Anzhou Cao ◽  
Xianqing Lv ◽  
Jinbao Song
Keyword(s):  

2011 ◽  
Vol 61 (11) ◽  
pp. 1783-1795 ◽  
Author(s):  
Yi-Chun Kuo ◽  
Ching-Sheng Chern ◽  
Joe Wang ◽  
Ya-Ling Tsai

2011 ◽  
Vol 41 (11) ◽  
pp. 2211-2222 ◽  
Author(s):  
Matthew H. Alford ◽  
Jennifer A. MacKinnon ◽  
Jonathan D. Nash ◽  
Harper Simmons ◽  
Andy Pickering ◽  
...  

Abstract Internal tide generation, propagation, and dissipation are investigated in Luzon Strait, a system of two quasi-parallel ridges situated between Taiwan and the Philippines. Two profiling moorings deployed for about 20 days and a set of nineteen 36-h lowered ADCP–CTD time series stations allowed separate measurement of diurnal and semidiurnal internal tide signals. Measurements were concentrated on a northern line, where the ridge spacing was approximately equal to the mode-1 wavelength for semidiurnal motions, and a southern line, where the spacing was approximately two-thirds that. The authors contrast the two sites to emphasize the potential importance of resonance between generation sites. Throughout Luzon Strait, baroclinic energy, energy fluxes, and turbulent dissipation were some of the strongest ever measured. Peak-to-peak baroclinic velocity and vertical displacements often exceeded 2 m s−1 and 300 m, respectively. Energy fluxes exceeding 60 kW m−1 were measured at spring tide at the western end of the southern line. On the northern line, where the western ridge generates appreciable eastward-moving signals, net energy flux between the ridges was much smaller, exhibiting a nearly standing wave pattern. Overturns tens to hundreds of meters high were observed at almost all stations. Associated dissipation was elevated in the bottom 500–1000 m but was strongest by far atop the western ridge on the northern line, where >500-m overturns resulted in dissipation exceeding 2 × 10−6 W kg−1 (implying diapycnal diffusivity Kρ > 0.2 m2 s−1). Integrated dissipation at this location is comparable to conversion and flux divergence terms in the energy budget. The authors speculate that resonance between the two ridges may partly explain the energetic motions and heightened dissipation.


2011 ◽  
Vol 41 (7) ◽  
pp. 1345-1363 ◽  
Author(s):  
Qiang Li ◽  
David M. Farmer

Abstract Time series observations of nonlinear internal waves in the deep basin of the South China Sea are used to evaluate mechanisms for their generation and evolution. Internal tides are generated by tidal currents over ridges in Luzon Strait and steepen as they travel west, subsequently generating high-frequency nonlinear waves. Although nonlinear internal waves appear repeatedly on the western slopes of the South China Sea, their appearance in the deep basin is intermittent and more closely related to the amplitude of the semidiurnal than the predominant diurnal tidal current in Luzon Strait. As the internal tide propagates westward, it evolves under the influence of nonlinearity, rotation, and nonhydrostatic dispersion. The interaction between nonlinearity and rotation transforms the internal tide into a parabolic or corner shape. A fully nonlinear two-layer internal wave model explains the observed characteristics of internal tide evolution in the deep basin for different representative forcing conditions and allows assessment of differences between the fully and weakly nonlinear descriptions. Matching this model to a wave generation solution for representative topography in Luzon Strait leads to predictions in the deep basin consistent with observations. Separation of the eastern and western ridges is close to the internal semidiurnal tidal wavelength, contributing to intensification of the westward propagating semidiurnal component. Doppler effects of internal tide generation, when combined with a steady background flow, suggest an explanation for the apparent suppression of nonlinear wave generation during periods of westward intrusion of the Kuroshio.


2010 ◽  
Vol 60 (5) ◽  
pp. 1047-1059 ◽  
Author(s):  
Ching-Sheng Chern ◽  
Sen Jan ◽  
Joe Wang

1998 ◽  
Vol 54 (1) ◽  
pp. 53-64 ◽  
Author(s):  
Ching-Sheng Chern ◽  
Joe Wang
Keyword(s):  

Sign in / Sign up

Export Citation Format

Share Document