Combined effect of the East Atlantic/West Russia and Western Pacific teleconnections on the East Asian winter monsoon

2017 ◽  
Vol 53 (2) ◽  
pp. 273-285 ◽  
Author(s):  
Hyoeun Oh ◽  
Jong-Ghap Jhun ◽  
Kyung-Ja Ha ◽  
Kyong-Hwan Seo
2021 ◽  
Author(s):  
Wenping Jiang ◽  
Hainan Gong ◽  
Ping Huang ◽  
Lin Wang ◽  
Gang Huang ◽  
...  

Abstract The influence of El Niño–Southern Oscillation (ENSO) on the East Asian winter monsoon (EAWM) is investigated based on the outputs of phase 6 of the Coupled Model Intercomparison Project (CMIP6) models and compared to that in phase 5 (CMIP5). Results show that the CMIP6 models generally reproduce the ENSO-EAWM teleconnection more realistically than the CMIP5 models, although they still somewhat underestimate the ENSO-EAWM teleconnection than observed. Based on the inter-model spread of ENSO-EAWM teleconnection simulated in the CMIP5/CMIP6 models, we reveal that the commonly underestimated ENSO-EAWM teleconnection among the models can be traced back to the excessive cold tongue bias in the equatorial western Pacific. A model with a stronger climatological cold tongue favors generating a more westward extension of the ENSO-related SST anomaly pattern, which in turn forces an anomalous cyclonic circulation over the Northwest Pacific (NWP). It offsets the anticyclonic anomalies in the NWP triggered by the warm ENSO-related SST anomalies in the tropical Indian Ocean and the central-eastern Pacific and weakens the ENSO-EAWM teleconnection. Compared with the CMIP5 models, CMIP6 models better simulate SST mean state and the resultant ENSO-EAWM teleconnection. The present results suggest that substantial efforts should be made to reduce the bias in the mean-state SST for further improving the simulation and projection of the East Asian-western Pacific winter climate.


2015 ◽  
Vol 127 (3-4) ◽  
pp. 551-561 ◽  
Author(s):  
Xiong Chen ◽  
Chongyin Li ◽  
Jian Ling ◽  
Yanke Tan

2021 ◽  
pp. 118213
Author(s):  
L.I. Yanjun ◽  
A.N. Xingqin ◽  
Z.H.A.N.G. Peiqun ◽  
Y.A.N.G. Jianling ◽  
W.A.N.G. Chao ◽  
...  

The Holocene ◽  
2021 ◽  
pp. 095968362110190
Author(s):  
Tsai-Wen Lin ◽  
Stefanie Kaboth-Bahr ◽  
Kweku Afrifa Yamoah ◽  
André Bahr ◽  
George Burr ◽  
...  

The East Asian Winter Monsoon (EAWM) is a fundamental part of the global monsoon system that affects nearly one-quarter of the world’s population. Robust paleoclimate reconstructions in East Asia are complicated by multiple sources of precipitation. These sources, such as the EAWM and typhoons, need to be disentangled in order to understand the dominant source of precipitation influencing the past and current climate. Taiwan, situated within the subtropical East Asian monsoon system, provides a unique opportunity to study monsoon and typhoon variability through time. Here we combine sediment trap data with down-core records from Cueifong Lake in northeastern Taiwan to reconstruct monsoonal rainfall fluctuations over the past 3000 years. The monthly collected grain-size data indicate that a decrease in sediment grain size reflects the strength of the EAWM. End member modelling analysis (EMMA) on sediment core and trap data reveals two dominant grain-size end-members (EMs), with the coarse EM 2 representing a robust indicator of EAWM strength. The downcore variations of EM 2 show a gradual decrease over the past 3000 years indicating a gradual strengthening of the EAWM, in agreement with other published EAWM records. This enhanced late-Holocene EAWM can be linked to the expansion of sea-ice cover in the western Arctic Ocean caused by decreased summer insolation.


Sign in / Sign up

Export Citation Format

Share Document