scholarly journals Production and characterization of nanostructured lipid carriers and solid lipid nanoparticles containing lycopene for food fortification

2017 ◽  
Vol 55 (1) ◽  
pp. 287-298 ◽  
Author(s):  
Ali Akhoond Zardini ◽  
Mohebbat Mohebbi ◽  
Reza Farhoosh ◽  
Shadi Bolurian
2015 ◽  
Vol 65 (1) ◽  
pp. 1-13 ◽  
Author(s):  
Ümit Gönüllü ◽  
Melike Üner ◽  
Gülgün Yener ◽  
Ecem Fatma Karaman ◽  
Zeynep Aydoğmuş

Abstract Solid lipid nanoparticles (SLN), nanostructured lipid carriers (NLC) and nanoemulsion (NE) of lornoxicam (LRX) were prepared for the treatment of painful and inflammatory conditions of the skin. Compritol® 888 ATO, Lanette® O and oleic acid were used as solid and liquid lipids. SLN, NLC and NE were found physically stable at various temperatures for 6 months. Case I diffusional drug release was detected as the dominant mechanism indicating Fickian drug diffusion from nanoparticles and nanoemulsion. The highest rate of drug penetration through rat skin was obtained with NE followed by NLC, SLN and a gel formulation. Nanoformulations significantly increased drug penetration through rat skin compared to the gel (p < 0.05). Thus, SLN, NLC and NE of LRX can be suggested for relieving painful and inflammatory conditions of the skin


2011 ◽  
Vol 6 (4) ◽  
pp. 240-250 ◽  
Author(s):  
Rajashree Hirlekar ◽  
Harshal Garse ◽  
Vilasrao Kadam

2021 ◽  
Vol 14 (8) ◽  
pp. 711
Author(s):  
Cláudia Pina Costa ◽  
Sandra Barreiro ◽  
João Nuno Moreira ◽  
Renata Silva ◽  
Hugo Almeida ◽  
...  

The nasal route has been used for many years for the local treatment of nasal diseases. More recently, this route has been gaining momentum, due to the possibility of targeting the central nervous system (CNS) from the nasal cavity, avoiding the blood−brain barrier (BBB). In this area, the use of lipid nanoparticles, such as nanostructured lipid carriers (NLC) and solid lipid nanoparticles (SLN), in nasal formulations has shown promising outcomes on a wide array of indications such as brain diseases, including epilepsy, multiple sclerosis, Alzheimer’s disease, Parkinson’s disease and gliomas. Herein, the state of the art of the most recent literature available on in vitro studies with nasal formulations of lipid nanoparticles is discussed. Specific in vitro cell culture models are needed to assess the cytotoxicity of nasal formulations and to explore the underlying mechanism(s) of drug transport and absorption across the nasal mucosa. In addition, different studies with 3D nasal casts are reported, showing their ability to predict the drug deposition in the nasal cavity and evaluating the factors that interfere in this process, such as nasal cavity area, type of administration device and angle of application, inspiratory flow, presence of mucoadhesive agents, among others. Notwithstanding, they do not preclude the use of confirmatory in vivo studies, a significant impact on the 3R (replacement, reduction and refinement) principle within the scope of animal experiments is expected. The use of 3D nasal casts to test nasal formulations of lipid nanoparticles is still totally unexplored, to the authors best knowledge, thus constituting a wide open field of research.


Sign in / Sign up

Export Citation Format

Share Document