Ectomycorrhizal fungal diversity in Quercus ilex Mediterranean woodlands: variation among sites and over soil depth profiles in hyphal exploration types, species richness and community composition

Symbiosis ◽  
2013 ◽  
Vol 61 (1) ◽  
pp. 1-12 ◽  
Author(s):  
Oula Shahin ◽  
Nicolas Martin-St Paul ◽  
Serge Rambal ◽  
Richard Joffre ◽  
Franck Richard
2021 ◽  
Vol 9 ◽  
Author(s):  
Ying Zhang ◽  
Hongyu Cao ◽  
Peishan Zhao ◽  
Xiaoshuai Wei ◽  
Guodong Ding ◽  
...  

Revegetation is regarded as an effective means to improve the ecological environment in deserts and profoundly influences the potential ecological functions of the soil fungal community. Therefore, Illumina high-throughput sequencing was performed to characterize the soil fungal diversity and community composition at two soil depths (0–10 cm and 10–20 cm) with four revegetation durations (natural grassland, half-mature, nearly mature, and mature Pinus. sylvestris var. mongolica plantations) in the Mu Us Sandy Land, China. The effects of soil properties on soil fungal communities were also examined to reveal the connection between fungal function and soil environment. The results indicated that 1) soil nutrient content and enzyme activity showed significant differences through the restoration durations, 2) there was no significant effect of soil depth on soil fungal diversity, while the Shannon diversity index of all fungal communities was significantly different among different revegetation durations, 3) compared with grassland, ectomycorrhizal fungi (notably, Inocybe, Tuber, and Calostoma) were abundant in plantations. The endophyte fungus Mortierella was among the top 10 genera in all soil samples and arbuscular mycorrhizal fungus Diversispora was the indicator genus of the grassland, and 4) catalase and total nitrogen were the main factors affecting fungal community composition and were closely related to saprotrophs and pathotrophs, respectively. This new information indicates the variation of soil fungal communities along revegetation durations and highlights the interaction between fungal functions and desert ecosystems.


2021 ◽  
Author(s):  
Elizabeth J Messick ◽  
Christopher E Comer ◽  
Michael A Blazier ◽  
T Bently Wigley

Abstract In the southern United States, some landowners have established plantations of eucalyptus (Eucalyptus spp.) and are managing them on short rotations (<15 years) to provide wood for fiber and other potential uses. Establishment of short-rotation woody crops dominated by nonnative species has implications for resident fauna in the United States that are largely unknown. We compared avifauna abundance, diversity, and community composition in newly established Camden white gum (Eucalyptus benthamii) plantations with slash pine (Pinus elliottii) plantations of the same age and height (one to two and six to seven years old, respectively) in southwestern Louisiana, USA. Species richness, diversity, and community composition in newly established eucalyptus plantations and six- to seven-year-old pines were similar. More birds were observed, and bird detections varied less in eucalyptus plantations. Indigo buntings (Passerina cyanea) and other shrub-associated species were detected more often in eucalyptus stands. In contrast, species that inhabit herbaceous-dominated communities, such as eastern meadowlarks (Sturnella magna), or that were associated with a dense graminoid community (e.g., Bachman’s sparrow [Peucaea aestivalis]) were detected less often in eucalyptus. Overall, breeding bird communities in eucalyptus plantations one to two years postestablishment differed little from plantations dominated by slash pine. Study Implications Compared with slash pine (Pinus elliottii Englem) plantations of similar age and height (one to two years and six to seven years old, respectively) we found one- to two-year-old eucalyptus (Eucalyptus benthamii Maiden & Cambage) plantations supported similar avian species richness and diversity to six- to seven-year-old pine stands. Furthermore, we found these eucalyptus plantations (E13) supported an avian community that was intermediate to similar aged pine (S13) and pine of similar height (S08). However, avian communities will likely change as eucalyptus plantations age (Christian et al. 1997). Continued monitoring and assessment of community composition, richness, and abundance is important for determining the magnitude of this change. Future investigations focused on nest success, fecundity, postfledging monitoring, and survivorship compared with other types of planted forests and native cover types would help us better understand eucalyptus plantation effects on avifauna demographics (Van Horne 1983, Martin 1998, Jones 2001, Wood et al. 2004, Sage et al. 2006, Riffell et al. 2011).


2017 ◽  
Vol 7 (23) ◽  
pp. 10233-10242 ◽  
Author(s):  
Jacob Nabe-Nielsen ◽  
Signe Normand ◽  
Francis K. C. Hui ◽  
Laerke Stewart ◽  
Christian Bay ◽  
...  

2020 ◽  
Vol 10 (1) ◽  
Author(s):  
Tanya A. Petruff ◽  
Joseph R. McMillan ◽  
John J. Shepard ◽  
Theodore G. Andreadis ◽  
Philip M. Armstrong

Abstract Historical declines in multiple insect taxa have been documented across the globe in relation to landscape-level changes in land use and climate. However, declines have either not been universally observed in all regions or examined for all species. Because mosquitoes are insects of public health importance, we analyzed a longitudinal mosquito surveillance data set from Connecticut (CT), United States (U.S.) from 2001 to 2019 to identify changes in mosquito community composition over time. We first analyzed annual site-level collections and metrics of mosquito community composition with generalized linear/additive mixed effects models; we also examined annual species-level collections using the same tools. We then examined correlations between statewide collections and weather variables as well as site-level collections and land cover classifications. We found evidence that the average trap night collection of mosquitoes has increased by ~ 60% and statewide species richness has increased by ~ 10% since 2001. Total species richness was highest in the southern portion of CT, likely due to the northward range expansion of multiple species within the Aedes, Anopheles, Culex, and Psorophora genera. How the expansion of mosquito populations in the northeast U.S. will alter mosquito-borne pathogen transmission in the region will require further investigation.


2011 ◽  
Vol 41 (8) ◽  
pp. 1687-1697 ◽  
Author(s):  
Lee Jacobs ◽  
Jeff E. Houlahan

Here, we examine the effects of adjacent land use in a managed forest on pond-breeding amphibian species richness and community composition at 34 New Brunswick, Canada, ponds. Amphibian species richness was negatively correlated with the proportion of roads, precommercial thinning, and hardwood forest and positively correlated with the proportion of wetlands in adjacent lands. These land-use effects peak at 180 m from the ponds. Road density was negatively correlated with Lithobates catesbeiana and Lithobates septentrionalis presence. Precommercial thinning was negatively correlated with Ambystoma spp. presence and positively correlated with Anaxyrus americanus presence. Wetlands were positively correlated with L. septentrionalis and Notopthalamus viridescens presence. Correlations were also found between water table height and A. americanus, Lithobates palustris , and Ambystoma spp. presence. In addition, L. catesbeiana and N. viridescens presence–absence was positively correlated with the proportion of mature and overmature forest on the landscape (at scales of 500 and 1000 m, respectively). Lastly, the proportion of regenerating and sapling forest on the landscape was negatively correlated with L. palustris presence–absence but, by contrast, was positively correlated with A. americanus. These results suggest that the effects of adjacent land use may significantly impact amphibian populations in managed eastern Canadian forests.


Sign in / Sign up

Export Citation Format

Share Document