scholarly journals Adsorptive removal of phenol and aniline by modified bentonite: adsorption isotherm and kinetics study

2018 ◽  
Vol 8 (6) ◽  
Author(s):  
Shahin Ahmadi ◽  
Chinenye Adaobi Igwegbe
2014 ◽  
Vol 56 (7) ◽  
pp. 1929-1939 ◽  
Author(s):  
Manohar D. Mullassery ◽  
Noeline B. Fernandez ◽  
Thayyath S. Anirudhan

2018 ◽  
Vol 6 (1) ◽  
pp. 33-42
Author(s):  
Ramin Sarvani ◽  
Elhamh Damani ◽  
Shahin Ahmadi ◽  
◽  
◽  
...  

2012 ◽  
Vol 554-556 ◽  
pp. 2089-2092 ◽  
Author(s):  
Xi Quan Wang ◽  
Xiao Kang Gong ◽  
Biao Yu

Organically modified bentonite was prepared by using hexadecyl trimethyl ammonium bromide (HDTMA) under ultrasonic conditions in this experiment. The modified bentonite was used to treat the acid brilliant scarlet GR and the adsorption behavior was investigated. The results indicated that the adsorption isotherm data were well fit for the Langmuir isotherm model and the pseudo two-order adsorption kinetics equation has the highest goodness of fit and the best linear correlation.


2017 ◽  
Vol 12 (1) ◽  
pp. 186-201 ◽  
Author(s):  
Vhahangwele Masindi ◽  
W. Mugera Gitari ◽  
Hlanganani Tutu

The present study reports the optimum conditions for intercalating the Al3+ species to bentonite clay matrices and evaluate the potential of using Al3+-modified bentonite clay (Alum-Bent) for removal of oxyanionic species of As, B, Cr, Mo and Se from coal fly ash (FA) leachates. Removal of oxyanionic species was done in batch experimental procedures. Parameters optimized were: contact time, adsorbent dosage, concentration and pH. The adsorption affinity of Al3+-bentonite clay for oxyanionic species varied as follows: B ≈ Se > Mo > Cr ≈ As respectively. The adsorption data fitted better to Langmuir adsorption isotherm than Freundlich adsorption isotherm hence confirming mono-site adsorption. The adsorption kinetics fitted well pseudo-second-order kinetic model hence confirming chemisorption. The fact that most of the oxyanion were adsorbed at pH ≥ pHpzc indicated that both electrostatic and chemical interactions occurred with the clay surface and interlayers. The Al3+-modified bentonite clay successfully removed oxyanion species from generated coal FA leachates. This study shows that Al3+-modified bentonite clay is an effective adsorbent for oxyanion species in coal FA leachates and could be applied as a reactive barrier in coal FA retention ponds.


Sign in / Sign up

Export Citation Format

Share Document