langmuir isotherm model
Recently Published Documents


TOTAL DOCUMENTS

424
(FIVE YEARS 221)

H-INDEX

14
(FIVE YEARS 5)

2021 ◽  
Author(s):  
C Donga ◽  
S Mishra ◽  
A Aziz ◽  
L Ndlovu ◽  
A Kuvarega ◽  
...  

Abstract (3-aminopropyl) triethoxysilane (APTES) modified magnetic graphene oxide was synthesized and applied in the adsorption of three heavy metals, Pb(II), Cd(II) and Ni(II) from aqueous solution. An approach to prepare magnetic GO was adopted by using (3-aminopropyl) triethoxysilane (APTES) as a functionalizing agent on magnetic nanosilica coupled with GO to form the Fe3O4@SiO2-NH2/GO nanocomposite. FT-IR, XRD, BET, UV, VSM, SAXS, SEM and TEM were used to characterize the synthesized nanoadsorbents. Batch adsorption studies were conducted to investigate the effect of solution pH, initial metal ion concentration, adsorbent dosage and contact time. The maximum equilibrium time was found to be 30 min for Pb(II), Cd(II) and 60 min for Ni(II). The kinetics studies showed that the adsorption of Pb(II), Cd(II) and Ni(II) onto Fe3O4@SiO2-NH2/GO followed the pseudo-second-order kinetics. All the adsorption equilibrium data were well fitted to Langmuir isotherm model and maximum monolayer adsorption capacity for Pb(II), Cd(II) and Ni(II) were 13.46, 18.58 and 13.52 mgg-1, respectively. The Fe3O4@SiO2-NH2/GO adsorbents were reused for at least 7 cycles without the leaching of mineral core, showing the enhanced stability and potential application of Fe3O4@SiO2-NH2/GO adsorbents in water/wastewater treatment.


2021 ◽  
Vol 0 (0) ◽  
Author(s):  
Mohammed S. Hagag ◽  
Shaimaa M. Esmaeel ◽  
Fatma Salem ◽  
Salah A. Zaki ◽  
Amr H. Ali

Abstract In this investigation, a synthetic Talc Phosphogypsum ferri-silicate TPFS sorbent was prepared by thermal activation then evaluated the uranium ions removal from sulfate waste solution containing uranium. Generally, the synthetic adsorbents from raw and waste materials have a significant attention from scientists because the environmental concern and economic development, particularly, the uranium elimination from radioactive waste solutions. The uranium removal percentage and loading capacity were determined by optimization the conditions of adsorption such as the pH range, adsorbent/adsorbate ratio, uranium concentration of radioactive waste solutions, equilibrium time and temperature. The resultant adsorption efficiency and loading capacity were 87.2% and 375 mg g−1, respectively. The adsorption isothermally was in accordance with Langmuir isotherm model, in addition pseudo-second-order kinetic model, with theoretical capacity of 384.6 and 333 mg g−1, respectively. Uranium (VI) adsorption on TPFS was inhibited at elevated temperatures. The removal of uranium from sulfate waste solution by TPES sorbent according to the thermodynamic functions values was exothermic (∆H of −16.095) and non-spontaneous in nature (∆G of −17.27 at 303 K). In addition, there was a decrease in the randomness at the TPFS/uranium waste solution interface with ∆S value of 3.88.


2021 ◽  
Vol 11 (3) ◽  
pp. 271
Author(s):  
Kambiré Ollo ◽  
Kouakou Yao Urbain ◽  
Kouyaté Amadou ◽  
Sadia Sahi Placide ◽  
Kouadio Kouakou Etienne ◽  
...  

<p>In the present study, adsorption experiments were carried out to investigate the removal of rhodamine B from an aqueous solution using chemically activated carbon from corn cobs, a cheaper adsorbent. The characteristics of carbon were determined using X-ray diffraction, SEM, iodine number, pHpzc, and the Boehm titration method. The results show that the prepared activated carbon is amorphous, microporous, and generally acidic on the surface. The kinetic study of the adsorption of rhodamine B on this carbon was carried out, and the rate of sorption was found to conform to pseudo-second-order kinetics with 80 min as equilibrium time. The equilibrium adsorption revealed that the experimental data fitted better to the Langmuir isotherm model for removing rhodamine B. The interaction rhodamine B-activated carbon is mainly chemisorption type. The optimal conditions of rhodamine B removal onto the carbon of this study are mass of carbon = 0.3 g and pH = 3.15. The maximum monolayer adsorption capacity for rhodamine B removal was found to be 5.92 mg.g<sup>-1</sup>. This study has shown that the prepared activated carbon makes it possible to effectively clean up wastewater contaminated by rhodamine B with a removal efficiency of up to 99.60% for 300 mg of AC in 25 mL of the rhodamine B solution (5 mg.L<sup>-1</sup>).</p>


Author(s):  
Huimei Shan ◽  
Jinxian Zhang ◽  
Sanxi Peng ◽  
Hongbin Zhan ◽  
Danxue Liao

Monothioarsenate (MTAsV) is one of the major arsenic species in sulfur- or iron-rich groundwater, and the sediment adsorption of MTAsV plays an important role in arsenic cycling in the subsurface environment. In this study, batch experiments and characterization are conducted to investigate the sorption characteristic and mechanism of MTAsV on natural sediments and the influences of arsenite and arsenate. Results show that MTAsV adsorption on natural sediments is similar to arsenate and arsenite, manifested by a rapid early increasing stage, a slowly increasing stage at an intermediate time until 8 h, before finally approaching an asymptote. The sediment sorption for MTAsV mainly occurs on localized sites with high contents of Fe and Al, where MTAsV forms a monolayer on the surface of natural sediments via a chemisorption mechanism and meanwhile the adsorbed MTAsV mainly transforms into other As species, such as AlAs, Al-As-O, and Fe-As-O compounds. At low concentration, MTAsV sorption isotherm by natural sediments becomes the Freundlich isotherm model, while at high concentration of MTAsV, its sorption isotherm becomes the Langmuir isotherm model. The best-fitted maximum adsorption capacity for MTAsV adsorption is about 362.22 μg/g. Furthermore, there is a competitive effect between MTAsV and arsenate adsorption, and MTAsV and arsenite adsorption on natural sediments. More specifically, the presence of arsenite greatly decreases MTAsV sorption, while the presence of MTAsV causes a certain degree of reduction of arsenite adsorption on the sediments before 4 h, and this effect becomes weaker when approaching the equilibrium state. The presence of arsenate greatly decreases MTAsV sorption and the presence of MTAsV also greatly decreases arsenate sorption. These competitive effects may greatly affect MTAsV transport in groundwater systems and need more attention in the future.


Materials ◽  
2021 ◽  
Vol 14 (23) ◽  
pp. 7413
Author(s):  
Laura Bulgariu ◽  
Daniela Ionela Ferţu ◽  
Irina Gabriela Cara ◽  
Maria Gavrilescu

In this study, soy waste biomass (SW) resulting from oil extraction was treated with alkaline solution, and the obtained material (Na-SW) was used as biosorbent for the removal of Pb(II), Cd(II), and Zn(II) ions from aqueous media. The performance of this biosorbent was examined in batch systems, at different initial metal ion concentrations and contact times (pH 3.4; 5 g of biosorbent/L). Isotherm and kinetic modeling was used to calculate the equilibrium and kinetics of the biosorption processes. The maximum biosorption capacity, calculated from the Langmuir isotherm model, followed the order Zn(II) (0.49 mmol/g) > Cd(II) (0.41 mmol/g) ≈ Pb(II) (0.40 mmol/g), while the kinetics of biosorption processes fit the pseudo-second-order model. Three cycles of biosorption/desorption were performed to estimate the reusability of Na-SW biosorbent, and the regeneration efficiency was higher than 97% in all cases. The practical applicability of Na-SW biosorbent in treating of wastewater contaminated with Pb(II), Cd(II), and Zn(II) ions was examined using simulated wastewater samples, and the main quality characteristics of the effluents obtained after treatment were evaluated. All these aspects highlight the potential applicability of Na-SW for large-scale wastewater treatment.


2021 ◽  
Vol 55 (9-10) ◽  
pp. 1163-1175
Author(s):  
YAN HAO ◽  
◽  
JING QU ◽  
ZUNYI LIU ◽  
SONGBO LI ◽  
...  

A novel adsorbent made of porous cellulose/graphene oxide composite microspheres (PCGCM) was synthesized in [Bmim]Cl ionic liquid. The as-prepared PCGCM was evaluated for the removal of Ce (III) via static adsorption experiments. The results showed that the adsorption equilibrium of Ce (III) onto PCGCM was achieved within 50 min and the adsorption was highly pH dependent. An excellent adsorption capacity as high as 415.1 mg•g-1 was obtained at a pH of 4.9, which was much higher than most adsorbents reported in the literature. The pseudo-second order kinetic model and Langmuir isotherm model were found to fit the adsorption behavior of PCGCM well. The XPS analysis confirmed that the adsorption was based on the ion exchange mechanism. Meanwhile, PCGCM could be regenerated with 1 mol•L-1 HCl for repetitious adsorption of Ce (III). This work provides an attractive approach for the removal of rare earth ions as pollutants.


2021 ◽  
Vol 12 (6) ◽  
pp. 7775-7786

The application of the biosorption process and agricultural waste to treat heavy metals has drawn much attention. This method seems to be a more economical, environmentally friendly, and simple way for removing heavy metals from effluents. The study was conducted to explore the efficiency of the biosorption process utilizing spent mushroom compost to remove copper (II) and iron (II) from synthetic wastewater. Biosorption studies at different operating parameters, such as biosorbent dosage (1.0 – 5.0 g), pH (pH 4 – 8), contact time (1 - 30 minutes), and initial heavy metal concentration (10 - 100 mg/L), were conducted in batch experiments. The highest performance for copper (II) and iron (II) biosorption was found at 5.0 g biosorbent dosage of spent mushroom compost, unadjusted pH 6, 10 minutes of contact time, and 10 mg/L of initial concentration. The study was well fitted to the Langmuir isotherm model (R2 > 0.95) for copper (II) and iron (II) biosorption, which are much greater compared to the Freundlich model. The study is also very well suited to the pseudo-second-order (R2 > 0.999) than the pseudo-first-order kinetic models. In conclusion, the spent mushroom compost has the potential to be an effective biosorbent for removing copper (II) and iron (II) from synthetic wastewater.


2021 ◽  
Vol 13 (23) ◽  
pp. 13264
Author(s):  
A. A. Oyekanmi ◽  
Akil Ahmad ◽  
Siti Hamidah Mohd Setapar ◽  
Mohammed B. Alshammari ◽  
Mohammad Jawaid ◽  
...  

This investigation reports on the biosorption mechanism of Congo Red dyes (CR) in aqueous solution using acid-treated durian peels, prepared for this study. The biosorbent nature was characterized using the Scanning Electron Microscopy (SEM), Fourier Transform infrared spectroscopy (FT-IR) and Brunaure-Emmet-Teller (BET). The effect of process parameters within operational range of pH (2–9), contact time (10–200 min), initial concentration (25–400 mg g−1) and temperature (25–65 °C) for the optimum removal of CR dyes was investigated using central composite design (CCD) under response surface methodology (RSM), and revealed that the optimum condition of biosorption was achieved around a pH of 5.5, contact time of 105 min at initial concentration of 212.5 mg L−1 within 45 °C temperature, which corresponds to 95.2% percent removal of CR. The experimental data fitted better to the second order polynomial model, with a correlation coefficient R2 value of 0.9917 and the Langmuir isotherm model with biosorption capacity of 107.52 mg g−1. Gibbs free energy indicated that the adsorption of CR dyes was spontaneous. The mechanism of the adsorption of CR dyes revealed that the biosorption of CR dyes investigated under different operational conditions show that under acidic pH, the adsorption efficiency of the acid treated durian peels is enhanced for the adsorption of CR dye molecules.


Water ◽  
2021 ◽  
Vol 13 (23) ◽  
pp. 3316
Author(s):  
Asma Hanif ◽  
Shaukat Ali ◽  
Muhammad Asif Hanif ◽  
Umer Rashid ◽  
Haq Nawaz Bhatti ◽  
...  

The untreated effluents discharged by different industries, such as metallurgy, fertilizers, pesticide, leather, mining, electroplating, surface finishing, aerospace, and electroplating, have increased the risk of the contamination of bodies of water by heavy metals. Herein, hybrid biosorbent–nanofiltration processes for Pb(II) removal from wastewater was studied. The hybrid biosorbent was prepared from date seed waste and Ganoderma lucidum. Hybrid biosorbent characterization was performed by SEM and FTIR. SEM micrographs showed that the HB surface is irregular. For the adsorption studies, various sorption parameters were optimized. The maximum biosorption capacity of immobilized heat-inactivated hybrid biosorbent was 365.9 mg/g, with the Langmuir isotherm model to present the best fit. Desorption experiments were conducted for regenerating immobilized heat-inactivated hybrid biosorbent for three consecutive cycles using different desorption agents, with acetic acid to be the optimum. Going a step further, nanofiltration was also applied as a post-treatment process to elevate the remediation effectiveness for wastewater of high Pb(II) initial concentrations. The reasonably low cost and high removal of Pb(II) make hybrid biosorbent–nanofiltration processes a prosperous and potentially attractive hybrid approach against heavy-metal-polluted wastewater.


2021 ◽  
Author(s):  
Maoling Wu ◽  
Ling Ding ◽  
Jun Liao ◽  
Yong Zhang ◽  
Wenkun Zhu

Abstract In this work, the efficient extraction of uranium in solution using Al2O3-SiO2-T was reported. Kinetics and isotherm models indicated that the removal process of uranium onAl2O3-SiO2-T accorded with pseudo-second-order kinetic model and Langmuir isotherm model, which showed that the adsorption process was a uniform mono-layer chemical behavior. The maximum adsorption capacity of Al2O3-SiO2-T reached 738.7 mg g-1, which was higher than AlNaO6Si2 (349.8 mg g-1) and Al2O3-SiO2-NT (453.1 mg g-1), indicating that the addition of template could effectively improve the adsorption performance of Al2O3-SiO2 to uranium. Even after five cycles of adsorption-desorption, the removal percentage of uranium on Al2O3-SiO2-T remained 96%. Besides, the extraction efficiency of uranium on Al2O3-SiO2-T was 72.5% in simulated seawater, which suggested that the Al2O3-SiO2-T was expected to be used for uranium extraction from seawater. Further, the interaction mechanism between Al2O3-SiO2-T and uranium species was studied. The results showed that the electrostatic interaction and complexation played key roles in the adsorption process of Al2O3-SiO2-T to uranium.


Sign in / Sign up

Export Citation Format

Share Document