scholarly journals An evolutionary optimization approach to prevent electronics burnout in subsea oil and gas equipment

Author(s):  
Ramechecandane Somassoundirame ◽  
Eswari Nithiyananthan

AbstractThe electronics burnout in subsea engineering equipment caused by the excessive heating of electronics due to improper cooling mechanism is an area of major concern in subsea oil and gas fields. Very often the electronic canisters are encapsulated by insulation to prevent hydrate formation in the subsea completion equipment. The electronic equipment with a set of sensors is usually deployed subsea for live monitoring of data and to regulate the functioning of the equipment. This study presents a numerical methodology to predict and prevent electronics burnout in a pressure/temperature transmitter (PT/TT) that is truly representative of a wide class of PT/TT deployed subsea. An optimization study of the insulation system around the PT/TT sensors that encompasses the various contradicting constraints that are routinely encountered in subsea engineering has been presented for the benefit of the readers. In the present study, the optimal design of the insulation system around the electronics equipment is generated using a combination of thermal finite element analysis and evolutionary optimization algorithms. The results obtained show that the proposed methodology can yield results which could be a tremendous improvement in the traditional means of designing the insulation systems for such electronics equipment. It is also shown that locating the electronic housing far from the production fluid in the PT/TT sensors can lead to proper cooling and thereby avoid the burnout to a significant extent.

2021 ◽  
Vol 1201 (1) ◽  
pp. 012078
Author(s):  
Y Ma ◽  
Y Xing ◽  
T H Hemmingsen

Abstract Recently, a novel Subsea Shuttle Tanker (SST) concept has been proposed to transport carbon dioxide (CO2) from ports to offshore oil and gas fields for either permanent storage or enhanced oil recovery (EOR). SST is a large autonomous underwater vehicle that travels at a constant water depth away from waves. SST has some key advantages over subsea pipelines and tanker ships when employed at marginal fields. It enables carbon storage in marginal fields which do not have sufficient volumes to justify pipelines. Further, in contrast to ships, SST does not require the use of a permanently installed riser base. This paper will evaluate the key challenges of using such vessel for CO2 transportation. It discusses the most important properties such as thermodynamic properties, purity, and hydrate formation of CO2 at different vessel-transportation states in relation to cargo sizing, material selection, and energy consumption.


Author(s):  
Alejandro D. Tello

As offshore oil and gas production continues to push into deeper waters, subsea production systems are challenged to manage the inherently higher operating temperatures and pressures. As a consequence of their direct exposure to seawater, subsea “wet” insulation systems on subsea trees, manifolds, and jumpers are amongst the most affected by this progression. Due to the significant thermal gradient between the production stream and subsea environment, subsea insulation systems are constantly trying to inhibit the natural heat transfer. In an effort preserve the operational integrity of the production system, the subsea insulation system maintains the production stream temperature above the hydrate formation and wax deposition temperatures. Thus, any failures such as cracks, disbondment, or hydrolysis, substantially influence the subsea system’s operational philosophy. As a result of ExxonMobil’s observed performance challenges with wet insulation systems, a thorough qualification program was initiated in 2007 to validate the performance of a wet insulation system under simulated service conditions. The qualification consisted of 3 test phases, including basic material property tests, simulated service tests, and an extended service test, for multiple insulation systems. This paper presents an overview of select subsea insulation failures, the qualification program, and subsequent assessment of key material properties, such as tensile strength/elongation, density, and hardness.


CIM Journal ◽  
2018 ◽  
Vol 9 (4) ◽  
pp. 195-214
Author(s):  
G. J. Simandl ◽  
C. Akam ◽  
M. Yakimoski ◽  
D. Richardson ◽  
A. Teucher ◽  
...  

Author(s):  
A.V. Antonov ◽  
◽  
Yu.V. Maksimov ◽  
A.N. Korkishko ◽  
◽  
...  

Sign in / Sign up

Export Citation Format

Share Document