Statistical optimization of solid state fermentation conditions for the enhanced production of thermoactive chitinases by mesophilic soil fungi using response surface methodology and their application in the reclamation of shrimp processing by-products

2013 ◽  
Vol 64 (2) ◽  
pp. 671-681 ◽  
Author(s):  
Nidheesh Thadathil ◽  
Anil Kumar Peedikathara Kuttappan ◽  
Elakkiyaselvi Vallabaipatel ◽  
Maheswari Kandasamy ◽  
Suresh Puthanveetil Velappan
2017 ◽  
Vol 2017 ◽  
pp. 1-13 ◽  
Author(s):  
Ponnuswamy Vijayaraghavan ◽  
P. Rajendran ◽  
Samuel Gnana Prakash Vincent ◽  
Arumugaperumal Arun ◽  
Naif Abdullah Al-Dhabi ◽  
...  

Fibrinolytic enzymes have wide applications in clinical and waste treatment. Bacterial isolates were screened for fibrinolytic enzyme producing ability by skimmed milk agar plate using bromocresol green dye, fibrin plate method, zymography analysis, and goat blood clot lysis. After these sequential screenings,Bacillussp. IND12 was selected for fibrinolytic enzyme production.Bacillussp. IND12 effectively used cow dung for its growth and enzyme production (687±6.5 U/g substrate). Further, the optimum bioprocess parameters were found out for maximum fibrinolytic enzyme production using cow dung as a low cost substrate under solid-state fermentation. Two-level full-factorial experiments revealed that moisture, pH, sucrose, peptone, and MgSO4were the vital parameters with statistical significance (p<0.001). Three factors (moisture, sucrose, and MgSO4) were further studied through experiments of central composite rotational design and response surface methodology. Enzyme production of optimized medium showed4143±12.31 U/g material, which was more than fourfold the initial enzyme production (978±36.4 U/g). The analysis of variance showed that the developed response surface model was highly significant (p<0.001). The fibrinolytic enzyme digested goat blood clot (100%), chicken skin (83±3.6%), egg white (100%), and bovine serum albumin (29±4.9%).


Sign in / Sign up

Export Citation Format

Share Document