With Different Axial Compression, the Finite Element Analysis of Concrete Frame Column that Reinforced by Assemble Inclined Web Steel Truss

2014 ◽  
Vol 1079-1080 ◽  
pp. 177-182
Author(s):  
Shao Wu Zhang ◽  
Ying Chuan Chen ◽  
Geng Biao Zhang

In order to study the performance of concrete frame columns that reinforcedby assembleinclined web steel truss, with the same reciprocatinghorizontal displacement and different axialcompression.It canbe calculate the mechanical behavior of concrete frame columns and reinforced columns by using the finite element analysis software ABAQUS. Simulation analysis shows that the bearing capacity ofreinforced columnshas greatly increased andpresented a full hysteresis curve. The result shows that the reinforcement method of assemble inclined web steel truss can greatly improve the bearing capacity and ductility of the concrete frame column, and the axial compression is larger, the better the reinforcement effect.

2020 ◽  
Vol 3 (1) ◽  
Author(s):  
Zhen Ouyang ◽  
Ke Wang ◽  
Zihao Yu ◽  
Kaikai Xu ◽  
Qianyu Zhao ◽  
...  

It is a complex problem to study the interaction between sand castle and flowing water, which needs to consider the complexity of seawater flow and the stress of sand castle structure. The authors use the fluid-solid coupling model to establish the connection between the fluid field and the structural mechanical field, and use the finite element analysis to complete the simulation modeling of the transient process of wave impact and sandcastle foundation deformation. This paper analyzes the stress and the first principal strain of the sand castle foundation in the direction of flow velocity when the sand castle foundation is hit by waves, as a method to judge the strength of the sand castle.The best shape: the boundary value of sand castle collapse caused by strain have been determined, so as to obtain the maximum stress that a sand castle foundation can bear before collapse, which makes it possible to use the fatigue strength calculation theory of sand castle solid to carry out the quantitative calculation of sand castle durability. At the same time, the impact of waves is abstracted as wave motion equation. Finally, the finite element analysis technology is adopted to calculate the main strain of sandcastles of different shapes under the impact of the same wave, and through the comparison of the main strain, the authors get the sandcastle shape with the strongest anti-wave impact ability, which is the eccentric circular platform body.Affected by rain: the authors considered the effect of rainwater infiltration on the sandcastle's stress, and simplified the process of rain as a continuous and uniform infiltration of rain into the sandcastle's surface. The rain changes the gravity of the sand on the castle's surface. Simulation analysis is adopted to calculate the surface stress of sand castle with different degree of water seepage and different geometry. By comparison, it has been found that the smooth cone is more able to withstand the infiltration of rain without collapse. 


2012 ◽  
Vol 468-471 ◽  
pp. 2517-2520 ◽  
Author(s):  
Xin Ying Xie ◽  
Xin Sheng Yin

In this paper ,it analyses the push-extend multi-under-reamed pile in use of elastic-plastic theory by the software ANSYS.It takes four push-extend multi-under-reamed piles which are the same except plates' distance.It introduces the realative theory to make the anlysis much more accuracy.The results which is taken by ANSYS are researched to find out the regularity and can certain the reasonable plate's distance to anlyze the bearing capacity of push-extend multi-under-reamed pile at the same time.


2000 ◽  
Vol 13 (02) ◽  
pp. 65-72 ◽  
Author(s):  
R. Shahar

SummaryThe use of acrylic connecting bars in external fixators has become widespread in veterinary orthopaedics. One of the main advantages of an acrylic connecting bar is the ability to contour it into a curved shape. This allows the surgeon to place the transcortical pins according to safety and convenience considerations, without being bound by the requirement of the standard stainless steel connecting bar, that all transcortical pins be in the same plane.The purpose of this study was to evaluate the stiffness of unilateral and bilateral medium-sized external fixator frames with different curvatures of acrylic connecting bars. Finite element analysis was used to model the various frames and obtain their stiffness under four types of load: Axial compression, four-point medio-lateral bending, fourpoint antero-posterior bending and torsion. The analysis also provided the maximal pin stresses occurring in each frame for each loading condition.Based on the results of this study, curvatures of acrylic connecting bars of up to a maximal angular difference between pins of 25° will result in very similar stiffness and maximal pin stresses to those of the equivalent, uniplanar stainless steel system. In both unilateral and bilateral systems the stiffness decreases slightly as angulation increases for axial compression and medio-lateral bending, increases slightly for torsion and increases substantially for antero-posterior bending.External fixator systems with curved acrylic connecting bars are commonly used in veterinary orthopaedics. This paper evaluates the biomechanical performance of such systems by applying the finite element analysis method. It shows that external fixators with curved acrylic connecting bars exhibit stiffness and maximal pin stresses which are similar to those of the standard stainless steel system.


2014 ◽  
Vol 578-579 ◽  
pp. 278-281
Author(s):  
Pi Yuan Xu ◽  
Qian Chen ◽  
Ya Feng Xu

In this paper, in order to understand fully the development of failure mechanism, bearing capacity and seismic performance of the steel H-beams and composite concrete filled steel tubular (CFST) column joints strengthened by outside strengthening ring, in the space zone the effects of changing the axial compression ratio is investigated. A 3D joint finite element model is built up by finite element software ABAQUS, the elastic-plastic finite element analysis is carried through numerical modeling process. The analysis results showed that low axial compression ratio has a little influence on the bearing capacity; with the increase of axial pressure the bearing capacity will decrease in a high axial compression ratio, moreover the failure pattern of joint changes from beam end to column end. The ductility of the specimens is decreased by raising axial compression ratio.


2014 ◽  
Vol 578-579 ◽  
pp. 695-698
Author(s):  
Xi Le Li ◽  
Li Hua Niu

Based on the model experiment on seismic behavior of a 1-span, 2-story concrete-filled rectangular steel tubal (CFRST) frame under lateral cyclic loads, a 3-D nonlinear finite element model of concrete-filled rectangular steel tubular frame is proposed in the paper. Compared with the experimental hysteresis curve, the computational results are found to be accurate, which shows that this model proposed in the paper can be applied in structure analysis of concrete-filled rectangular tubular frames. So the model was used in the finite element analysis of concrete-filled rectangular frame with different axial load level. Compared the computational displacement envelop curves, it concludes that the ductility and bearing capacity of CFRST frames reduces with the increasing axial load level.


2011 ◽  
Vol 2-3 ◽  
pp. 861-864
Author(s):  
Ling Ling Li ◽  
Guang Pu Xu ◽  
Bing Bing Cui

The mechanism withstands 220t high temperature molten steel. In case of damage, molten steel pours. There will be major security incidents. Therefore, it is necessary to calculate carrying capacity of the mechanism. However, the part of components of the mechanism is made up of a crisscross of steel plate. This is used to withstand the bending and stretching. If we rely on traditional mechanical analysis, a large number of simplifying must be adopted, and accuracy of the calculation can be reduced. Therefore, this paper uses the COSMOSWorks Plug-in of SolidWorks software to carry out finite element calculation of whole machine for the mechanism. It avoids these shortcomings mentioned above. And this makes bearing capacity calculation to be more close to the actual circumstances. And the results show that: (1) the maximum stress of parts in the mechanism is only 52.8Mpa and much less than permissible stresses of its materials. As a result, the mechanism has sufficient bearing capacity. (2) The maximum displacement of whole machine is 2.637 mm. And the displacement will cause dip angle when lifting molten steel and it is less than its allowable stiffness. Therefore, the deformation is to meet requirements for the mechanism. In conclusion, the finite element analysis of the whole machine avoids complex force analysis and simplification of structure. The calculation has high accuracy. It is one of effective methods in the design of intensity and stiffness of complex structures.


2021 ◽  
Vol 272 ◽  
pp. 02017
Author(s):  
Xiaomeng Zhang ◽  
Weilun Ding ◽  
Qingying Ren ◽  
Wenting Liu ◽  
Qiaji Wang

In this paper, a new type of prefabricated concrete structure system is put forward, and a new type of bi-directional multi-ribbed floor is put forward in combination with this system.Finite element analysis is carried out on the floor, and its mechanical properties are analyzed, and compared with the test hysteresis curve, the rationality and correctness of the finite element analysis are obtained.


2014 ◽  
Vol 578-579 ◽  
pp. 263-268
Author(s):  
Bing Li ◽  
Qi Zhang ◽  
Shuang Meng

The paper achieved the nonlinear analysis of bearing capacity of recycled concrete filled steel tubular short columns by using finite element analysis software ABAQUS. In order to meet the finite element analysis the writer put forward the modified formula of recycled concrete constitutive relationship of core, and elaborate d the contact at the interface of steel tube and the core concrete and related modeling points. Finally the load-deformation curves of the finite element analysis and test results coincide well. It indicates that the modified formula of recycled concrete constitutive relationship can better meet the requirements of analyzing bearing capacity of recycled concrete filled circular steel tubular columns under compressive Loading by using ABAQUS. Through the simulation experiment, it is useful for us to obtain the ultimate reliable bearing capacity of the similar structure member.


2013 ◽  
Vol 275-277 ◽  
pp. 1276-1280
Author(s):  
Yun Lin Liu ◽  
Wan Yun Yin ◽  
Ru Ling ◽  
Ke Wei Ding ◽  
Ren Cai Jin ◽  
...  

To reduce the construction cost of the domestic promotion of the new prefabricated concrete shear wall structure system which is promoted in our country. To analyze the factors which can affect the load-carrying capacity and seismic performance of shear wall, including the axial compression ratio, the concrete strength, the reinforcement ratio and some other factors. Among all these factors, the axial compression ratio is the main factor influencing the seismic performance and the section ductility [1]. This paper adopts the ANSYS finite element analysis program, operating a nonlinear analysis on the performance of the precast shear wall when it is with one-way loading, studying the axial compression ratio's effect on the bearing capacity and deformability of the precast shear wall. According to the finite element analysis, when the axial compression ratio is between 0.2 to 0.4 and as it rises, the specimen's bearing capacity and stiffness will increases while deformability and ductility will decrease. Through the finite element analysis, we can provide reliable theory basis for the performance of the precast shear wall when it is with one-way loading.


Sign in / Sign up

Export Citation Format

Share Document