scholarly journals Experimental Study of the Ductility of a Submerged Arc Welded Corner Joint in a High-Performance Steel Built-Up Box Column

2020 ◽  
Vol 20 (5) ◽  
pp. 1454-1464
Author(s):  
Satoshi Yamada ◽  
Yuko Shimada ◽  
Takanori Ishida ◽  
Yuka Matsumoto ◽  
Jun Iyama ◽  
...  

Abstract Submerged arc welding, which is generally used for the corner joint of box-section columns, is a welding process with a high heat input. The influence on the strength and toughness of the heat-affected zone is an important concern, especially when used with a high-performance steel that may be more susceptible to heat input. The ductility of the welded corner joint is one of the important factors to ensure safety against external forces, such as during severe earthquakes. In this study, a series of material and cyclic loading tests of the corner joint comprising SA440C high-performance steel fabricated by submerged arc welding were conducted. The experimental results indicated that the welded corner joint comprising SA440C steel is ductile enough to dissipate input energy caused by the strong ground motion from an earthquake.

2008 ◽  
Vol 41 (3) ◽  
pp. 46
Author(s):  
G. Vinamra ◽  
A. Kumar ◽  
P. K. Rai ◽  
A. Ghosh ◽  
S. Mukherkee ◽  
...  

2011 ◽  
Vol 110-116 ◽  
pp. 3191-3198
Author(s):  
Sadegh Moeinifar

The high-strength low-alloy microalloyed steel was procured as a hot rolled plate with accelerated cooling. The Gleeble thermal simulated process involved heating the steel specimens to the peak temperature of 1400 °C, with constant cooling rates of 3.75 °C/s and 2 °C/s to room temperature. The four-wire tandem submerged arc welding process, with different heat input, was used to generate a welded microstructure. The martensite/austenite constituent appeared in the microstructure of the heat affected zone region for all the specimens along the prior-austenite grain boundaries and between bainitic ferrite laths. The blocky-like and stringer martensite/austenite morphology were observed in the heat affected zone regions. The martensite/austenite constituents were obtained by a combination of field emission scanning electron microscopes and image analysis software The Charpy absorbed energy of specimens was assessed using Charpy impact testing at-50 °C. Brittle particles, such as martensite/austenite constituent along the grain boundaries, can make an easy path for crack propagation. Similar crack initiation sites and growth mechanism were investigated for specimens welded with different heat input values.


2012 ◽  
Vol 622-623 ◽  
pp. 315-318
Author(s):  
Aparesh Datta ◽  
Subodh Debbarma ◽  
Subhash Chandra Saha

The quality of joining has assumed a greater role in fabrication of metal in recent years, because of the development of new alloys with tremendously increased strength and toughness. Submerged arc welding is a high heat input fusion welding process in which weld is produced by moving localized heat source along the joint. The weld quality in turn affected by thermal cycle that the weldment experiences during the welding. In the present study a simple comprehensive mathematical model has been developed using a moving heat source and analyzing the temperature on one section and then the temperature distribution of other section are correlated with time delay with reference analyzed section.


2012 ◽  
Vol 2012 ◽  
pp. 1-8
Author(s):  
Aniruddha Ghosh

Investigation of temperature distribution of submerged arc welded plates is essential while designing submerged arc welding joint because the key parameter for the change of weld bead geometry dimension, thermal stress, residual stress, tensile stress, hardness, and so forth is heat input, and heat input is the function of temperature distribution of GMAW process. An attempt is made in this paper to find out the exact solution of the thermal field induced in a semi-infinite body by a moving heat source with Gaussian distribution by selecting appropriate inside volume for submerged arc welding process. It has been revealed that for GMAW, best suitable heat source shape is a combination of semispherical and semioval.


2011 ◽  
Vol 284-286 ◽  
pp. 2469-2472
Author(s):  
Aniruddha Ghosh ◽  
Somnath Chattopadhyaya ◽  
S. Mukherjee

In Submerged Arc Welding process involves critical set of variables which are needed to control. An attempt has been made in this paper to find out- the influence of the heat input and bead volume on HAZ Hardness for Submerged Arc Welding Process of Mild steel plates. Mild steel plates are welded by changing input variables (current, voltage, travel speed, i.e. heat input) and Rockwell hardness no. has been observed on welded portion and at the zone adjacent to the welded portion. A detailed analysis of the microstructure changes is carried out to understand the HAZ softening phenomenon.


2014 ◽  
Vol 941-944 ◽  
pp. 2016-2025
Author(s):  
Xing Chun Wang ◽  
Feng Gui Lu ◽  
Isak Andersen ◽  
Long Seng Yu

Longitudinal hot tearing, popularly called as end cracking, frequently takes place in the end portions of large steel panels’ butt joints, using one-sided, submerged-arc welding with flux copper backing welding process (FCB welding). The study was to look for the possibility to improve and/or prevent the end cracking issue during FCB welding, center blind-hole drilling technique was used to measure the welding residual stress for five different cases, considering hot tearing mechanism, its influence factors and the relevant reported prevention measures. Unpredictable result was observed subsequently that transverse compressive stress is found on the shallow surface of weld seams, which could give supplementary information to the common assumption for conventional low heat input welding method that cracks initiation is caused by tensile stresses across the welded joints. The study concluded that FCB welding end cracking issue is caused by the comprehensive function of different stresses, and also properly use tack welding practice, suitable elastic run-off plate and relatively low heat input energy which will reduce the end cracking susceptibility for the tested materials.


Sign in / Sign up

Export Citation Format

Share Document