scholarly journals Modeling of Thermel Transport for GMAW

2012 ◽  
Vol 2012 ◽  
pp. 1-8
Author(s):  
Aniruddha Ghosh

Investigation of temperature distribution of submerged arc welded plates is essential while designing submerged arc welding joint because the key parameter for the change of weld bead geometry dimension, thermal stress, residual stress, tensile stress, hardness, and so forth is heat input, and heat input is the function of temperature distribution of GMAW process. An attempt is made in this paper to find out the exact solution of the thermal field induced in a semi-infinite body by a moving heat source with Gaussian distribution by selecting appropriate inside volume for submerged arc welding process. It has been revealed that for GMAW, best suitable heat source shape is a combination of semispherical and semioval.

2011 ◽  
Vol 319-320 ◽  
pp. 135-149 ◽  
Author(s):  
Aniruddha Ghosh

The determination of the temperature distribution of submerged arc-welded plates is essential when designing submerged arc-welded joints. The key role for the change of weld-bead geometry dimension, thermal stress, residual stress, tensile stress, hardness, etc., is heat input. Heat input is the function of temperature distribution of submerged arc welded plates. An attempt is made in this paper to find the analytical solution for a moving heat-source of egg-shape in a semi-infinite body. The considered modes of heat transfer for this study are conduction and convection. The solution has been obtained by integrating the instantaneous point heat source throughout the heat source volume. Very good agreement between the predicted and measured transient temperatures at various points on submerged arc-welded plates has been obtained. The predicted yield parameters are also in good agreement with the measured values.


2012 ◽  
Vol 622-623 ◽  
pp. 315-318
Author(s):  
Aparesh Datta ◽  
Subodh Debbarma ◽  
Subhash Chandra Saha

The quality of joining has assumed a greater role in fabrication of metal in recent years, because of the development of new alloys with tremendously increased strength and toughness. Submerged arc welding is a high heat input fusion welding process in which weld is produced by moving localized heat source along the joint. The weld quality in turn affected by thermal cycle that the weldment experiences during the welding. In the present study a simple comprehensive mathematical model has been developed using a moving heat source and analyzing the temperature on one section and then the temperature distribution of other section are correlated with time delay with reference analyzed section.


2015 ◽  
Vol 11 (4) ◽  
pp. 494-506 ◽  
Author(s):  
Ravinder Pal Singh ◽  
R. K. Garg ◽  
D. K. Shukla

Purpose – Optimization of response parameter is essential in any process .The purpose of this paper is to focus at achieving the optimized parameter for submerged arc welding to furnish the quality welds at direct current electrode positive (DCEP) polarity and direct current electrode negative (DCEN) polarity. Design/methodology/approach – This paper achieves the parameter after extensive trial runs and finally parameters are optimized to acquire the cost effective and quality welds in submerged arc welding using the response surface methodology. Findings – Apart from effect of parameters on weld bead geometry has been identified but optimized parameters has also been achieved for submerged arc welding process for DCEP and DCEN polarities. Practical implications – As this study is related to practical work it may be useful for any relevant application. Social implications – The process parameters used in this experimental work will be basis for job work/industry for submerged arc welding. Originality/value – This paper identifies the effect of polarity in submerged arc welding.


2012 ◽  
Vol 3 (3) ◽  
pp. 228-233
Author(s):  
R. Dhollander ◽  
S. Vancauwenberghe ◽  
W. De Waele ◽  
N. Van Caenegem ◽  
E. Van Pottelberg

The assembly of large structures made out of thick steel plates requires a welding process bywhich multiple wires can be used simultaneously. To reproduce these industrial processes in a researchenvironment, OCAS has invested in a multiwire submerged arc welding (SAW) setup. In this multiwiresetup, up to five wires in tandem configuration can be used.The objective of this master thesis is to establish a deeper knowledge of process parameters used to weldsteel plates in a thickness range of 12,7 up to 25 mm, by means of the submerged arc welding process.Based on literature, a test matrix is composed in which the number of wires, the plate thickness and otherweld parameters are the variables. In addition, a specific plate preparation for each plate thickness isderived from the literature. The preformed weld trails will be evaluated on weld bead geometry andmetallographic properties. There is further experimental examination required, which will result in therevising of the matrix.


2020 ◽  
Vol 19 (02) ◽  
pp. 277-289
Author(s):  
Sumit Saini ◽  
Kulwant Singh

Protection of environment from industrialization and urbanization waste is the prime duty of engineers and researchers. Elimination of industrial waste completely is not possible because it is generally a byproduct of the process. It can be minimized by recycling or reusing. In this research, waste slag generated by steel plant is recycled as a useful flux for submerged arc welding. It is found that recycled slag is capable of producing acceptable weld bead geometry. The penetration achieved using recycled slag is 7.897[Formula: see text]mm, which is more than the penetration obtained using fresh flux, i.e. 6.027[Formula: see text]mm. The reinforcement produced by recycled slag is 2.632[Formula: see text]mm, which is close to the reinforcement obtained using fresh flux. It is further observed that chemistry of weld metal deposited using recycled slag is also at par with that of weld metal produced using fresh original flux. The amount of carbon present in weld metal produced by recycled slag is 0.15%, which is comparable to the percentage of carbon present in weld metal produced using fresh flux. The microstructure and microhardness obtained using recycled slag are also comparable with the microstructure and microhardness obtained using fresh flux. This research established the feasibility of recycling slag as a flux required for submerged arc welding process.


2021 ◽  
Vol 54 (2) ◽  
pp. 309-315
Author(s):  
Majid Midhat Saeed ◽  
Ziad Shakeeb Al Sarraf

Based on high quality and reliability, one of the most efficient methods for joining metals is Submerged Arc Welding (SAW). In this presented work, an attempt has been successfully taken to develop a model to predict the effect of input parameters on weld bead geometry of submerged arc welding process with the help of neural network technique and analysis of various process control variables and important of weld bead parameters in submerged arc welding. The complexity non-linear relationships of input / output variables for any computational models can be addressed by using artificial neural networks (ANN). Today, ANN represents a powerful modeling technique, that depend on statistical approach, presently practiced in many fields of engineering for modeling complex relationships that other physical models cannot be explained it easily. A welding process with automatic or semiautomatic is required to complete the weld through using tubular electrode with consumable flux. Parameters such as welding current, welding speed and voltage are influenced on the quality of the joints. The work conducts many experiments; these are basically depending on many factors and levels. A selection of 2205 duplex stainless steel is carried out in this study to conduct three factors and five levels of central composite design. Neural network model structure having number of neurons layers such as (3 input layers, 1 hidden layer and 3 output layers) with back propagation algorithm has been successfully applied to extract weld bead geometry from predicting the effect of input parameters. Good agreement was obtained between predicted and experiment results, however process parameters such as speed shows opposite effect on all weld parameters. It was seen that weld height and width are proportional to the amount of input current. The prediction of the neural network model showed excellent agreement with the actual results, which indicate that the neural network is viable means for predicting of not only weld bead geometry, but also other parameters such as polarity, current type and flux geometry. This recommends setting the neural network to be applicable for real time work.


2011 ◽  
Vol 110-116 ◽  
pp. 3191-3198
Author(s):  
Sadegh Moeinifar

The high-strength low-alloy microalloyed steel was procured as a hot rolled plate with accelerated cooling. The Gleeble thermal simulated process involved heating the steel specimens to the peak temperature of 1400 °C, with constant cooling rates of 3.75 °C/s and 2 °C/s to room temperature. The four-wire tandem submerged arc welding process, with different heat input, was used to generate a welded microstructure. The martensite/austenite constituent appeared in the microstructure of the heat affected zone region for all the specimens along the prior-austenite grain boundaries and between bainitic ferrite laths. The blocky-like and stringer martensite/austenite morphology were observed in the heat affected zone regions. The martensite/austenite constituents were obtained by a combination of field emission scanning electron microscopes and image analysis software The Charpy absorbed energy of specimens was assessed using Charpy impact testing at-50 °C. Brittle particles, such as martensite/austenite constituent along the grain boundaries, can make an easy path for crack propagation. Similar crack initiation sites and growth mechanism were investigated for specimens welded with different heat input values.


Sign in / Sign up

Export Citation Format

Share Document