scholarly journals Lentiviral Interleukin-10 Gene Therapy Preserves Fine Motor Circuitry and Function After a Cervical Spinal Cord Injury in Male and Female Mice

2020 ◽  
Author(s):  
Jessica Y. Chen ◽  
Emily J. Fu ◽  
Paras R. Patel ◽  
Alexander J. Hostetler ◽  
Hasan A. Sawan ◽  
...  
2016 ◽  
Vol 276 ◽  
pp. 31-40 ◽  
Author(s):  
Gabriel Martínez-Gálvez ◽  
Juan M. Zambrano ◽  
Juan C. Diaz Soto ◽  
Wen-Zhi Zhan ◽  
Heather M. Gransee ◽  
...  

2021 ◽  
Author(s):  
Jared D. Sydney Smith ◽  
Vanessa Megaro ◽  
Aline Barroso Spejo ◽  
Lawrence D. F. Moon

AbstractTraumatic spinal cord injury (SCI) in humans occurs most frequently in the cervical spine where it can cause substantial sensorimotor impairments to upper limb function. The altered input to spinal circuits below the lesion leads to maladaptive reorganisation which often leads to hyperreflexia in proprioceptive circuits. Neurotrophin 3 (NT3) is growth factor essential for the development of proprioceptive neurons. We have previously shown that following bilateral corticospinal tract axotomy, intramuscular delivery of an Adeno-Associated Viral vector encoding NT3 (AAV-NT3) induces proprioceptive circuit reorganisation linked to functional recovery. To assess its therapeutic effects following a clinically relevant bilateral C5-C6 contusion in rats, AAV-NT3 was injected intramuscularly into the dominant limb 24 hours after injury and forelimb function was assessed over 13 weeks. The injury generated hyperreflexia of a distal forelimb proprioceptive circuit. There was also loss of fine motor skills during reach-and-grasp and walking on a horizontal ladder. Ex vivo magnetic resonance imaging (MRI) revealed atrophy of the spinal cord and white matter disruption throughout the lesion site together with extensive loss of grey matter. Unexpectedly, animals treated with AAV-NT3 had a slightly smaller lesion in the regions close to the epicentre compared to PBS treated animals. Rats treated with AAV-NT3 showed subtly better performance on the horizontal ladder and transient benefits on reach-and-grasp. AAV-NT3 did not normalise hyperreflexia in a treated muscle. The treatment increased the amount of NT3 in treated muscles but, unexpectedly, serum levels were only elevated in a small subset of animals. These results show that this dose and delivery of AAV-NT3 may generate subtle improvements in locomotion but additional treatments will be required to overcome the widespread sensorimotor deficits caused by contusion injury.


2020 ◽  
Author(s):  
Jessica Y Chen ◽  
Emily J Fu ◽  
Paras R Patel ◽  
Hasan A Sawan ◽  
Kayla A Moss ◽  
...  

AbstractIn mammals, spinal cord injuries often result in muscle paralysis through the apoptosis of lower motor neurons and denervation of neuromuscular junctions. Previous research shows that the inflammatory response to a spinal cord injury can cause additional tissue damage after the initial trauma. To modulate this inflammatory response, we delivered lentiviral anti-inflammatory interleukin-10, via loading onto an implantable biomaterial scaffold, into a left-sided hemisection at the C5 vertebra in mice. We hypothesized that improved behavioral outcomes associated with anti-inflammatory treatment are due to the sparing of fine motor circuit components. We examined behavioral recovery using a ladder beam, lower motor neuron apoptosis and muscle innervation using histology, and electromyogram recordings using intraspinal optogenetic stimulation at 2 weeks post-injury. Ladder beam analysis shows interleukin-10 treatment results in significant improvement of behavioral recovery at 2 and 12 weeks post-injury when compared to mice treated with a control virus. Histology shows interleukin-10 results in greater numbers of lower motor neurons and muscle innervation at 2 weeks post-injury. Furthermore, electromyogram recordings suggest that interleukin-10-treated animals have signal-to-noise ratios and peak-to-peak amplitudes more similar to that of uninjured controls than to that of control injured animals at 2 weeks post-injury. These data show that gene therapy using anti-inflammatory interleukin-10 can significantly reduce lower motor neuron loss, muscle denervation, and subsequent motor deficits after a spinal cord injury. Together, these results suggest that early modulation of the injury response can preserve muscle function with long-lasting benefits.


2019 ◽  
Vol 36 (15) ◽  
pp. 2298-2307 ◽  
Author(s):  
Anna Badner ◽  
Pia M. Vidal ◽  
James Hong ◽  
Justin Hacker ◽  
Michael G. Fehlings

2021 ◽  
Vol 4 (1) ◽  
Author(s):  
Michael D. Sunshine ◽  
Antonino M. Cassarà ◽  
Esra Neufeld ◽  
Nir Grossman ◽  
Thomas H. Mareci ◽  
...  

AbstractRespiratory insufficiency is a leading cause of death due to drug overdose or neuromuscular disease. We hypothesized that a stimulation paradigm using temporal interference (TI) could restore breathing in such conditions. Following opioid overdose in rats, two high frequency (5000 Hz and 5001 Hz), low amplitude waveforms delivered via intramuscular wires in the neck immediately activated the diaphragm and restored ventilation in phase with waveform offset (1 Hz or 60 breaths/min). Following cervical spinal cord injury (SCI), TI stimulation via dorsally placed epidural electrodes uni- or bilaterally activated the diaphragm depending on current and electrode position. In silico modeling indicated that an interferential signal in the ventral spinal cord predicted the evoked response (left versus right diaphragm) and current-ratio-based steering. We conclude that TI stimulation can activate spinal motor neurons after SCI and prevent fatal apnea during drug overdose by restoring ventilation with minimally invasive electrodes.


Sensors ◽  
2021 ◽  
Vol 21 (4) ◽  
pp. 1057
Author(s):  
Riccardo Bravi ◽  
Stefano Caputo ◽  
Sara Jayousi ◽  
Alessio Martinelli ◽  
Lorenzo Biotti ◽  
...  

Residual motion of upper limbs in individuals who experienced cervical spinal cord injury (CSCI) is vital to achieve functional independence. Several interventions were developed to restore shoulder range of motion (ROM) in CSCI patients. However, shoulder ROM assessment in clinical practice is commonly limited to use of a simple goniometer. Conventional goniometric measurements are operator-dependent and require significant time and effort. Therefore, innovative technology for supporting medical personnel in objectively and reliably measuring the efficacy of treatments for shoulder ROM in CSCI patients would be extremely desirable. This study evaluated the validity of a customized wireless wearable sensors (Inertial Measurement Units—IMUs) system for shoulder ROM assessment in CSCI patients in clinical setting. Eight CSCI patients and eight healthy controls performed four shoulder movements (forward flexion, abduction, and internal and external rotation) with dominant arm. Every movement was evaluated with a goniometer by different testers and with the IMU system at the same time. Validity was evaluated by comparing IMUs and goniometer measurements using Intraclass Correlation Coefficient (ICC) and Limits of Agreement (LOA). inter-tester reliability of IMUs and goniometer measurements was also investigated. Preliminary results provide essential information on the accuracy of the proposed wireless wearable sensors system in acquiring objective measurements of the shoulder movements in CSCI patients.


Sign in / Sign up

Export Citation Format

Share Document