scholarly journals Experimental and Numerical Investigations of Ship Parametric Rolling in Regular Head Waves

2018 ◽  
Vol 32 (4) ◽  
pp. 431-442 ◽  
Author(s):  
Shan Ma ◽  
Wen-peng Ge ◽  
R.C. Ertekin ◽  
Qiang He ◽  
Wen-yang Duan
2014 ◽  
Vol 58 (02) ◽  
pp. 97-105
Author(s):  
Hisham Moideen ◽  
Abhilash Somayajula ◽  
Jeffrey M. Falzarano

Parametric roll is a phenomenon in which there is a large rolling motion of a ship even when the ship is moving into head seas with no direct excitation. It is a nonlinear dynamic phenomenon of a ship rolling system with nonlinearities in the stiffness as well as the damping terms. Parametric roll of container ships in head seas is a relatively new problem, which has gained lot of importance after the catastrophic incidence of APL China in 1998. Analysis of parametric roll of container ships in regular head waves has been studied extensively. However, the ships do not encounter regular waves in the ocean. So, it is necessary to study how important parametric roll is in irregular seas. To study this, it is first important to model the variation of metacentric height in irregular waves, which is nonlinear as a result of the influence of underwater geometry and the motions of the ship in a seaway. In this work, the change of metacentric height (GM) in irregular waves has been modeled using a Volterra series approach. This transfer function for metacentric height (GM) is used to study parametric rolling of ships in irregular waves. Based on this study, roll motion sensitivity to the spectral peak period and significant wave height has been carried out.


2019 ◽  
Author(s):  
Zhiguo Zhang ◽  
Lixiang Guo ◽  
Shuang Wang ◽  
Ye Yuan ◽  
Can Chen

Abstract In this paper, an in-house CFD code HUST-Ship is used for the numerical simulation of parametric rolling phenomena of ONR Tumblehome in regular head wave. Preliminary resistance and roll decay simulations at Fr = 0.2 were carried out and compared with existed INSEAN experimental data. Following, three DOFs’ ship motions in regular head wave with an initial roll angle of 30 degrees was calculated to examine the possibility of occurrence of parametric rolling. Finally, a simulation without initial roll disturbance was performed to investigate its influence to the steady roll amplitude. By conducting fast Fourier transform of the time history of motions, forces and moments, the characteristics are analyzed and co-related with wave frequency. Results can be concluded that the in-house code has the ability to perform the parametric rolling simulation, and that the final steady roll amplitude is not affected by the initial disturbance. In addition, heave and pitch motions are dominantly affected by wave characteristic, roll frequency is about half that of wave, and that forces and moments in x direction exhibit high-order non-linearity.


Author(s):  
Manases Tello Ruiz ◽  
Jose Villagomez ◽  
Guillaume Delefortrie ◽  
Evert Lataire ◽  
Marc Vantorre

Abstract The IMO Intact Stability Code considers the parametric rolling phenomenon as one of the stability failure modes because of the larger roll angles attained. This hazardous condition of roll resonance can lead to loss of cargo, passenger discomfort, and even (in the extreme cases) the ship’s capsize. Studies as such are mostly conducted considering wave characteristics corresponding to wave lengths around one ship length (λ ≈ LPP) and wave amplitudes varying from moderate to rough values. These wave characteristics, recognised as main contributors to parametric rolling, are frequently encountered in deep water. Waves with lengths of such magnitudes are also met by modern container ships in areas in close proximity to ports, but with less significant wave amplitudes. In such areas, due to the limited water depth and the relatively large draft of the ships, shallow water effects influence the overall ship behaviour as well. Studies dedicated to parametric rolling occurrence in shallow water are scarce in literature. In spite of no accidents being yet reported in such scenarios, its occurrence and methods for its prediction require further attention; this in order to prevent any hazardous conditions. The present work investigates the parametric roll phenomenon numerically and experimentally in shallow water. The study is carried out with the KRISO container ship (KCS) hull. The numerical investigation uses methods available in literature to study the susceptibility and severity of parametric rolling. Their applicability to investigate this phenomenon in shallow water is also discussed. The experimental analysis was carried out at the Towing Tank for Manoeuvres in Confined Water at Flanders Hydraulics Research (in co-operation with Ghent University). Model tests comprised a variation of different forward speeds, wave amplitudes and wave lengths (around one LPP). The water depth was fixed to a condition equivalent to a gross under keel clearance (UKC) of 100% of the ship’s draft.


Author(s):  
Cheol-Min Lee ◽  
Sung-Chul Park ◽  
Jin-Won Yu ◽  
Jung-Eun Choi ◽  
Inwon Lee

2016 ◽  
Vol 59 ◽  
pp. 687-708 ◽  
Author(s):  
Sung-Hwan Yoon ◽  
Dong-Hwan Kim ◽  
Hamid Sadat-Hosseini ◽  
Jianming Yang ◽  
Frederick Stern

2004 ◽  
Vol 111 (0) ◽  
pp. 33-40
Author(s):  
Seong-Su LEE ◽  
Yoshiyuki SAKAI ◽  
Hiroyuki SADAKANE

Sign in / Sign up

Export Citation Format

Share Document