scholarly journals Influence of Ice Size Parameter Variation on Hydrodynamic Performance of Podded Propulsor

2020 ◽  
Vol 34 (1) ◽  
pp. 30-45
Author(s):  
Chun-yu Guo ◽  
Pei Xu ◽  
Chao Wang ◽  
Lian-zhou Wang ◽  
Cheng-sen Zhang
2003 ◽  
Vol 19 (02) ◽  
pp. 121-130 ◽  
Author(s):  
Michelle Lea ◽  
Donald Thompson ◽  
BillVan Blarcom ◽  
Jon Eaton ◽  
Juergen Friesch ◽  
...  

Podded propulsion is gaining more widespread use in the marine industry and is prevalent in newer cruise ships in particular. This propulsion system can provide many advantages to the ship owner that include increased propulsion efficiency, arrangement flexibility, payload, and harbor maneuverability. A new, unique podded propulsor concept is being developed that allows optimization of each element of the system. The concept comprises a ducted, multiple-blade row propulsor with a permanent magnet, radial field motor rotor mounted on the tips of the propulsor rotor blades, and the motor stator mounted within the duct of the propulsor. This concept, designated a commercial rim-driven propulsor pod (CRDP), when compared to a conventional hub-driven pod (HDP), offers improved performance in a number of areas, including equal or improved efficiency, cavitation, and hull unsteady pressures. The combination of these CRDP performance parameters allows the ship designer much greater flexibility to provide improved ship performance as compared to that of an HDP. A CRDP is being developed to power a panamax-size cruise vessel. The paper addresses the hydrodynamic performance of that CRDP design demonstrated at 1/25th scale as tested at the Hamburg Ship Model Basin, Hamburg Germany (HSVA).


2019 ◽  
Author(s):  
K Himei ◽  
K Okazaki ◽  
H Yamaguchi

On the off-design condition of CPP or podded propulsor, the angle of attack against the propeller blade or the flow interaction between propeller and pod housing is quite different from the propeller design condition. The flow around them is very complex. Hence there is the difficulty for numerical estimating. In order to verify the applicability to wide range of the off-design condition, RANS simulations were executed. The calculation range for CPP was complete two quadrant condition each at several pitch setting. Regarding podded propulsor, pull type and push one having the common propeller and housing were targeted and the range of pod steering angle were set to all 360 degrees. Hydrodynamic performance as these calculated results were compared with published experimental results including the rotational moment of changing CPP’s pitch angle or steering the pod housing. Then, it was found that there were good agreements except for the particular kind of the operating conditions.


Author(s):  
Hamidreza Bozorgasareh ◽  
Mohammad Jafari ◽  
Javad Khalesic ◽  
Heshmat Olah Gazori ◽  
Mostafa Hassanalian

1999 ◽  
Vol 59 (4) ◽  
pp. R1844-R1845 ◽  
Author(s):  
M. Bleicher ◽  
M. Reiter ◽  
A. Dumitru ◽  
J. Brachmann ◽  
C. Spieles ◽  
...  

Sign in / Sign up

Export Citation Format

Share Document