scholarly journals Robust model updating methodology for estimating worst-case load capacity of existing bridges

2018 ◽  
Vol 8 (5) ◽  
pp. 773-790 ◽  
Author(s):  
Didier G. Vernay ◽  
François-Xavier Favre ◽  
Ian F. C. Smith
Author(s):  
Zhanpeng Xu ◽  
Xiaoqian Chen ◽  
Yiyong Huang ◽  
Yuzhu Bai ◽  
Qifeng Chen

Collision prediction and avoidance are critical for satellite proximity operations, and the key is the treatment of satellites' motion uncertainties and shapes, especially for ultra-close autonomous systems. In this paper, the zonotope-based reachable sets are utilized to propagate the uncertainties. For satellites with slender structures (such as solar panels), their shapes are simplified as cuboids which is a special class of zonotopes, instead of the classical sphere approach. The domains in position subspace influenced by the uncertainties and shapes are determined, and the relative distance is estimated to assess the safety of satellites. Moreover, with the approximation of the domains, the worst-case uncertainties for path constraints are determined, and a robust model predictive control method is proposed to deal with the line of sight and obstacle avoidance constraints. With zonotope representations of satellites, the proposed robust model predictive control is capable of handling the shapes of the satellite and obstacle simultaneously. Numerical simulations demonstrate the effectiveness of the proposed methods with an elliptic reference orbit. 1


2020 ◽  
Vol 2020 ◽  
pp. 1-12 ◽  
Author(s):  
Yang Liu ◽  
Yanli Ye ◽  
Xianbang Chen ◽  
Huaqiang Li ◽  
Yuan Huang

Wind power generation has been widely deployed in the modern power system due to the issues of energy crisis and environment pollution. Meanwhile, the microgrid is gradually regarded as a feasible way to connect and accommodate the distributed wind power generations. Recently, more research studies also focus on incorporating various energy systems, for example, heat and gas into the microgrid in terms of satisfying different types of load demands. However, the uncertainty of wind power significantly impacts the economy of the integrated power-heat-gas microgrid. To deal with this issue, this paper presents a two-stage robust model to achieve the optimal day-ahead economic dispatch strategy considering the worst-case wind power scenarios. The first stage makes the initial day-ahead dispatch decision before the observation of uncertain wind power. The additional adjustment action is made in the second stage once the wind power uncertainty is observed. Based on the duality theory and Big-M approach, the original second-stage problem can be dualized and linearized. Therefore, the column-and-constraint generation algorithm can be further implemented to achieve the optimal day-ahead economic dispatch strategy for the integrated power-heat-gas microgrid. The experimental results indicate the effectiveness of the presented approach for achieving operation cost reduction and promoting wind power utilization. The robustness and the economy of the two-stage robust model can be balanced, of which the performances significantly outperform those of the single-stage robust model and the deterministic model.


2021 ◽  
Author(s):  
Richard P. Mohamed

This dissertation describes the kineto-elastic analysis and component structural dynamic model updating of serial modular reconfigurable robots (MRRs). In general, kineto-elastic analysis is concerned with the structural vibrations, elastic deflections, and torque transmissions of robots which undergo motion from one pose (position and orientation) to another. This work focuses on the kineto-elastic analysis of MRRs undergoing low-speed quasi-static motion. When determining an MRR's payload capacity, or designing MRR modules, the main difficulty is the large number of module configurations and the infinite number of poses within each configuration. Also, the kineto-elastic models of MRRs can become quite large with an increasing number of modules, thereby increasing the numerical complexity. Furthermore, the analytical models of individual MRR components may contain uncertainties, such as unknown stiffness and material parameters, which may lead to large errors for assembled MRR models. To alleviate these issues, a new framework was developed for the kineto-elastic analysis of MRR modules with an emphasis on assessing the worst-case poses. First, a combinatory search method was presented to reduce the computational burdens associated with determining the maximum payload capacity, and performing the module stiffness designs. This involved identifying the worst-case configuration and pose amongst a large number of configurations and infinite number of poses. Afterwards, it was demonstrated that the determination of an MRR's payload capacity, as well as the module stiffness designs, can be performed at the worst-case pose and configuration to satisfy a global set of kineto-elastic performance requirements for all remaining configurations. Next, a new component mode synthesis (CMS) model with fixed-free component boundaries was developed to reduce the sizes of kineto-elastic models, mimic natural link-joint connectivity, and allow experimental tests of joint modules in multiple poses to enable test-analysis model correlation. Finally, a novel method was created to update the uncertain model parameters of joint and link modules using frequency response data from component vibration tests in multiple poses (including the worst cases), with boundary conditions matching those from the CMS models. This procedure can completely avoid testing an entire assembly to perform model updating, and can provide accurate updated model results in any assembly pose.


Mathematics ◽  
2020 ◽  
Vol 8 (2) ◽  
pp. 211
Author(s):  
Lijun Xu ◽  
Yijia Zhou ◽  
Bo Yu

In this paper, we focus on a class of robust optimization problems whose objectives and constraints share the same uncertain parameters. The existing approaches separately address the worst cases of each objective and each constraint, and then reformulate the model by their respective dual forms in their worst cases. These approaches may result in that the value of uncertain parameters in the optimal solution may not be the same one as in the worst case of each constraint, since it is highly improbable to reach their worst cases simultaneously. In terms of being too conservative for this kind of robust model, we propose a new robust optimization model with shared uncertain parameters involving only the worst case of objectives. The proposed model is evaluated for the multi-stage logistics production and inventory process problem. The numerical experiment shows that the proposed robust optimization model can give a valid and reasonable decision in practice.


Author(s):  
Aravind Govindarajan ◽  
Amitabh Sinha ◽  
Joline Uichanco

We study a multilocation newsvendor network when the only information available on the joint distribution of demands are the values of its mean vector and covariance matrix. We adopt a distributionally robust model to find inventory levels that minimize the worst-case expected cost among the distributions consistent with this information. This problem is NP-hard. We find a closed-form tight bound on the expected cost when there are only two locations. This bound is tight under a family of joint demand distributions with six support points. For the general case, we develop a computationally tractable upper bound on the worst-case expected cost if the costs of fulfilling demands have a nested structure. This upper bound is the optimal value of a semidefinite program whose dimensions are polynomial in the number of locations. We propose an algorithm that can approximate general fulfillment cost structures by nested structures, yielding a computationally tractable heuristic for distributionally robust inventory optimization on general newsvendor networks. We conduct experiments on networks resembling U.S. e-commerce distribution networks to show the value of a distributionally robust approach over a stochastic approach that assumes an incorrect demand distribution. This paper was accepted by Chung Piaw Teo, optimization.


2021 ◽  
Author(s):  
Victor Vestman ◽  
Peter Collin ◽  
Robert Hällmark ◽  
Magnús Arason

<p>Traffic density and vehicle weight have been increasing over time, which implies that many existing road bridges were not designed for the high service loads and the increased number of load cycles that they are exposed to today. One way to increase the traffic load capacity of non-composite steel- concrete bridges is to use post-install shear connectors and one type of shear connector is the coiled spring pin. This type of connector has advantages for strengthening of existing bridges, since it enables an installation from below while the bridge is still in service and does not bring along removal of concrete and pavement, nor welding to the top flange.</p><p>This paper describes one ~50 years old Norwegian single span steel-concrete bridge that was strengthened with post-installed coiled spring pins. The strengthening method and the design procedure are presented, along with the results from a field monitoring on Sagstu bridge, performed to evaluate the behaviour of the strengthened structure. The results show that the coiled spring pins counteract the slip and bring along a very good degree of composite action.</p>


2014 ◽  
Vol 7 (2) ◽  
pp. 87-93 ◽  
Author(s):  
Monika Bakošová ◽  
Juraj Oravec

Abstract The continuous stirred-tank reactor with uncertain parameters was stabilized in the open-loop unstable steady state using the robust model predictive control. The gain matrices of the robust state-feedback controller were designed using the nominal system optimization and the quadratic parameter-dependent Lyapunov functions. The controller was verified by simulations using the non-linear model of the reactor and compared with the robust model predictive controller designed using the worst-case system optimization. The values of the quadratic cost function and the consumption of coolant were observed. Both robust model predictive controllers stabilized the reactor despite constrained control inputs and states. The robust model predictive control based on the nominal system optimization improved control responses and decreased the consumption of coolant.


Author(s):  
Binod Shrestha ◽  
Ahmed Gheni ◽  
Mohanad M. Abdulazeez ◽  
Mohamed A. ElGawady

Steel H-piles are a common structural system in existing bridges. Many steel H-piles have been corroded as a result of severe weather and acid/alkaline salt exposures, causing a reduction in the axial load capacity. This paper experimentally investigates the use of ultra-high performance concrete (UHPC) encasement as a novel repair method for corroded steel H-pile. UHPC displays better tensile strength, early compressive strength, workability, and durability compared with conventional concrete. The proposed repair is used to bridge the corroded section in H-pile using either a cast-in-place or precast UHPC elements. A series of push-out tests was conducted on eight full-scale piles to assess the axial force that can be transferred through shear studs and bond between the UHPC and steel piles. The test parameters include the type of casting of the UHPC, that is, cast-in-place versus precast elements, thickness and shape of the UHPC elements, an inclusion of carbon fiber reinforced polymer (CFRP) grid, number and grade of bolts, an inclusion of washer, and applying torque on the bolts. The experimental work demonstrated that the UHPC precast repair can be easily implemented. Moreover, using 57 mm (2.25 in.) thick UHPC plates reinforced by two layers of the CFRP grid was capable of transferring up to 81% of the squash load of the H-pile.


2020 ◽  
Vol 54 (5) ◽  
pp. 1189-1210 ◽  
Author(s):  
Shuming Wang ◽  
Zhi Chen ◽  
Tianqi Liu

We study the adaptive distributionally robust hub location problem with multiple commodities under demand and cost uncertainty in both uncapacitated and capacitated cases. The hub location decision anticipates the worst-case expected cost over an ambiguity set of possible distributions of the uncertain demand and cost, and the routing policy, being adaptive to the uncertainty realization, ships commodities through selected hubs. We investigate the adaptivity and tractability of the distributionally robust model under different distributional information about uncertainty. In the uncapacitated case in which demand and cost are independent and costs of different commodities are also mutually independent, the adaptive distributionally robust model is equivalent to a nonadaptive classical robust model and the second-stage routing decision follows an optimal static policy. We then relax the independence assumption and show that the second-stage routing decision follows an optimal scenario-wise policy if either the demand or the cost is supported on a convex hull of given scenarios. We extend our analysis to the capacitated case and show that the second-stage routing decision still follows an optimal scenario-wise policy if the demand is supported on the convex hull of given scenarios. In terms of tractability, for all mentioned cases, we reformulate the distributionally robust model as a moderate-sized mixed-integer linear program, and we recover the associated worst-case distribution by solving a collection of linear programs. Through numerical studies using the Civil Aeronautics Board data set, we demonstrate the advantages of the distributionally robust model by examining its superior out-of-sample performance against the classical robust model and the stochastic model.


Sign in / Sign up

Export Citation Format

Share Document