Study on the dispersion characteristics of the 60D40 turnout rail based on energy distribution

Author(s):  
Chenyang Hu ◽  
Rong Chen ◽  
Wenqiang Jiang ◽  
Jingmang Xu ◽  
Ping Wang ◽  
...  
2020 ◽  
Vol 2020 ◽  
pp. 1-13
Author(s):  
Xiaopeng Wang ◽  
Shifu Zhu ◽  
Song Chen ◽  
Ning Ma ◽  
Zhe Zhang

The investigation on the flow field and mixing characteristics of resonant sound mixing is of great significance for the dispersion mixing of superfine materials. In order to simulate the flow field and dispersion characteristics of resonant acoustic mixing, a gas-liquid-solid three-phase flow model based on the coupled level-set and volume-of-fluid (CLSVOF) and discrete particle model (DPM) was established. The CLSVOF model solves the gas-liquid interface, and the DPM model tracks the particle position. Then, the particle image velocimetry (PIV) experiment was performed using a self-made resonance acoustic hybrid prototype under different oscillation accelerations, and the radial velocity distribution between the experiment and simulation was compared. Finally, the proper orthogonal decomposition (POD) is used to decompose the flow field under different oscillation accelerations and fill levels, and the energy distribution law and the energy structure of different scales are extracted. The results show that the energy of the instantaneous flow field of the resonant sound is mainly concentrated in the low-order mode, and a close relationship was revealed between the energy distribution law and dispersion behavior of particles. The larger the small-scale coherent structures distribute, the more energy it has and the more favorable it is for fast and uniform dispersion.


1988 ◽  
Vol 102 ◽  
pp. 79-81
Author(s):  
A. Goldberg ◽  
S.D. Bloom

AbstractClosed expressions for the first, second, and (in some cases) the third moment of atomic transition arrays now exist. Recently a method has been developed for getting to very high moments (up to the 12th and beyond) in cases where a “collective” state-vector (i.e. a state-vector containing the entire electric dipole strength) can be created from each eigenstate in the parent configuration. Both of these approaches give exact results. Herein we describe astatistical(or Monte Carlo) approach which requires onlyonerepresentative state-vector |RV> for the entire parent manifold to get estimates of transition moments of high order. The representation is achieved through the random amplitudes associated with each basis vector making up |RV>. This also gives rise to the dispersion characterizing the method, which has been applied to a system (in the M shell) with≈250,000 lines where we have calculated up to the 5th moment. It turns out that the dispersion in the moments decreases with the size of the manifold, making its application to very big systems statistically advantageous. A discussion of the method and these dispersion characteristics will be presented.


Author(s):  
Tamotsu Ohno

The energy distribution in an electron; beam from an electron gun provided with a biased Wehnelt cylinder was measured by a retarding potential analyser. All the measurements were carried out with a beam of small angular divergence (<3xl0-4 rad) to eliminate the apparent increase of energy width as pointed out by Ichinokawa.The cross section of the beam from a gun with a tungsten hairpin cathode varies as shown in Fig.1a with the bias voltage Vg. The central part of the beam was analysed. An example of the integral curve as well as the energy spectrum is shown in Fig.2. The integral width of the spectrum ΔEi varies with Vg as shown in Fig.1b The width ΔEi is smaller than the Maxwellian width near the cut-off. As |Vg| is decreased, ΔEi increases beyond the Maxwellian width, reaches a maximum and then decreases. Note that the cross section of the beam enlarges with decreasing |Vg|.


2008 ◽  
Vol 42 (2) ◽  
pp. 125-128
Author(s):  
J. F. Al-Sharab ◽  
J. E. Wittig ◽  
G. Bertero ◽  
T. Yamashita ◽  
J. Bentley ◽  
...  

1979 ◽  
Vol 40 (C7) ◽  
pp. C7-385-C7-386
Author(s):  
S. Bourquard ◽  
J. M. Mayor ◽  
P. Kocian

1987 ◽  
Vol 48 (C6) ◽  
pp. C6-141-C6-146 ◽  
Author(s):  
M. Komuro ◽  
T. Kato

1997 ◽  
Vol 51 (8) ◽  
pp. 77-84
Author(s):  
L. M. Buzik ◽  
O. F. Pishko ◽  
S.A. Churilova ◽  
O. I. Sheremet

Sign in / Sign up

Export Citation Format

Share Document