scholarly journals Diagnostic study of global energy cycle of the grapes global model in the mixed space-time domain

2014 ◽  
Vol 28 (4) ◽  
pp. 592-606 ◽  
Author(s):  
Bin Zhao ◽  
Bo Zhang
2021 ◽  
Vol 11 (8) ◽  
pp. 3421
Author(s):  
Cheng-Yu Ku ◽  
Li-Dan Hong ◽  
Chih-Yu Liu ◽  
Jing-En Xiao ◽  
Wei-Po Huang

In this study, we developed a novel boundary-type meshless approach for dealing with two-dimensional transient flows in heterogeneous layered porous media. The novelty of the proposed method is that we derived the Trefftz space–time basis function for the two-dimensional diffusion equation in layered porous media in the space–time domain. The continuity conditions at the interface of the subdomains were satisfied in terms of the domain decomposition method. Numerical solutions were approximated based on the superposition principle utilizing the space–time basis functions of the governing equation. Using the space–time collocation scheme, the numerical solutions of the problem were solved with boundary and initial data assigned on the space–time boundaries, which combined spatial and temporal discretizations in the space–time manifold. Accordingly, the transient flows through the heterogeneous layered porous media in the space–time domain could be solved without using a time-marching scheme. Numerical examples and a convergence analysis were carried out to validate the accuracy and the stability of the method. The results illustrate that an excellent agreement with the analytical solution was obtained. Additionally, the proposed method was relatively simple because we only needed to deal with the boundary data, even for the problems in the heterogeneous layered porous media. Finally, when compared with the conventional time-marching scheme, highly accurate solutions were obtained and the error accumulation from the time-marching scheme was avoided.


Author(s):  
Konstantinos Makantasis ◽  
Athanasios Voulodimos ◽  
Anastasios Doulamis ◽  
Nikolaos Bakalos ◽  
Nikolaos Doulamis

2015 ◽  
Vol 348 ◽  
pp. 137-148 ◽  
Author(s):  
Kun Li ◽  
Jie Liu ◽  
Xu Han ◽  
Xingsheng Sun ◽  
Chao Jiang

Author(s):  
Ugur Cem Hasar ◽  
Yunus Kaya ◽  
Hamdullah Ozturk ◽  
Mucahit Izginli ◽  
Joaquim Jose Barroso ◽  
...  

Author(s):  
Lonny L. Thompson

Abstract A Computational Structural Acoustics (CSA) capability for solving scattering, radiation, and other problems related to the acoustics of submerged structures has been developed by employing some of the recent algorithmic trends in Computational Fluid Dynamics (CFD), namely time-discontinuous Galerkin Least-Squares finite element methods. Traditional computational methods toward simulation of acoustic radiation and scattering from submerged elastic bodies have been primarily based on frequency domain formulations. These classical time-harmonic approaches (including boundary element, finite element, and finite difference methods) have been successful for problems involving a limited range of frequencies (narrow band response) and scales (wavelengths) that are large compared to the characteristic dimensions of the elastic structure. Attempts at solving large-scale structural acoustic systems with dimensions that are much larger than the operating wavelengths and which are complex, consisting of many different components with different scales and broadband frequencies, has revealed limitations of many of the classical methods. As a result, there has been renewed interest in new innovative approaches, including time-domain approaches. This paper describes recent advances in the development of a new class of high-order accurate and unconditionally stable space-time methods for structural acoustics which employ finite element discretization of the time domain as well as the usual discretization of the spatial domain. The formulation is based on a space-time variational equation for both the acoustic fluid and elastic structure together with their interaction. Topics to be discussed include the development and implementation of higher-order accurate non-reflecting boundary conditions based on the exact impedance relation through the. Dirichlet-to-Neumann (DtN) map, and a multi-field representation for the acoustic fluid based on independent pressure and velocity potential variables. Numerical examples involving radiation and scattering of acoustic waves are presented to illustrate the high-order accuracy achieved by the new methodology for CSA.


Sign in / Sign up

Export Citation Format

Share Document