scholarly journals Water vapor transport around the Tibetan Plateau and its effect on summer rainfall over the Yangtze River valley

2016 ◽  
Vol 30 (4) ◽  
pp. 472-482 ◽  
Author(s):  
Chiqin Li ◽  
Qunjie Zuo ◽  
Xiangde Xu ◽  
Shouting Gao
Atmosphere ◽  
2019 ◽  
Vol 10 (7) ◽  
pp. 368 ◽  
Author(s):  
Zhixing Xie ◽  
Bo Sun

Intensive snowfall events (ISEs) have a profound impact on the society and economy in China during winter. Considering that the interaction between northerly cold advection and southerly water vapor transport (WVT) is generally an essential condition for the occurrence of ISEs in eastern China, this study investigates the different roles of anomalous southerly WVT and northerly cold advection during the ISEs in the North China (NC) and Yangtze River valley (YRV) regions based on a composite analysis of seventy ISE cases in NC and forty ISE cases in the YRV region from 1961 to 2014. The results indicate that the ISEs in NC are mainly associated with a significant pre-conditioning of water vapor over NC induced by southerly WVT anomalies over eastern China, whereas the ISEs in the YRV region are mainly associated with a strengthened Siberian High (SH) and strong northerly cold advection invading the YRV region. These results suggest a dominant role of anomalous southerly WVT in triggering the ISEs in NC and a dominant role of northerly cold advection in triggering the ISEs in the YRV region. The different roles of anomalous southerly WVT and northerly cold advection in the ISEs over the NC and YRV regions are largely attributed to the different winter climate in the NC and YRV regions—during winter, the NC (YRV) region is dominated by cold and dry (relatively warm and moist) air flow and hence southerly WVT (northerly cold advection) is the key factor for triggering the ISEs in NC (the YRV region).


2021 ◽  
pp. 1-54

Abstract It has been suggested that summer rainfall over Central Asia (CA) is significantly correlated with the summer thermal distribution of the Tibetan Plateau (TP) and the Indian summer monsoon (ISM). However, relatively few studies have investigated their synergistic effects of different distribution. This study documents the significant correlations between precipitation in CA and the diabatic heating of TP and the ISM based on the results of statistical analysis and numerical simulation. Precipitation in CA is is dominated by two water vapor transport branches from the south which are related to the two primary modes of anomalous diabatic heating distribution related to the TP and ISM precipitation, that is, the “+-” dipole mode in the southeastern TP and the Indian subcontinent (IS), and the “+-+” tripole mode in the southeastern TP, the IS, and southern India. Both modes exhibit obvious mid-latitude Silk Road pattern (SRP) wave trains with cyclone anomalies over CA, but with different transient and stationary eddies over south Asia. The different locations of anomalous anticyclones over India govern two water vapor transport branches to CA, which are from the Arabian Sea and the Bay of Bengal. The water vapor flux climbs while being transported northward and can be transported to CA with the cooperation of cyclonic circulation. The convergent water vapor and ascending motion caused by cyclonic anomalies favor the precipitation in CA. Further analysis corroborates the negative South Indian Ocean Dipole (NSIOD) in February could affect the tripole mode distribution of TP heating and ISM via the atmospheric circulation, water vapor transport and an anomalous Hadley cell circulation. The results indicate a reliable prediction reference for precipitation in CA.


2021 ◽  
Vol 35 (4) ◽  
pp. 557-570
Author(s):  
Licheng Wang ◽  
Xuguang Sun ◽  
Xiuqun Yang ◽  
Lingfeng Tao ◽  
Zhiqi Zhang

2016 ◽  
Vol 29 (7) ◽  
pp. 2395-2406 ◽  
Author(s):  
Shixin Wang ◽  
Hongchao Zuo

Abstract Many studies have shown that the northward (southward) displacement of the East Asian westerly jet (EAWJ) drastically reduces (increases) summer rainfall in the Yangtze River valley (YRV). However, the effect of the jet’s intensity on interannual variation in summer rainfall has not been systematically studied. The present study investigates the effect of the EAWJ’s intensity on this interannual variation and analyzes the mechanism by which this process occurs. In early summer, the EAWJ consists of two branches: one located over northern continental East Asia [western branch (EAWJWB)] and one extending from southern China to the northern Pacific [eastern branch (EAWJEB)]. The former merges into the latter over the Yellow Sea. A stronger EAWJEB leads to increased rainfall in the YRV, while the EAWJWB does not significantly affect rainfall in the YRV. The faster EAWJEB directly strengthens midtropospheric warm advection over the YRV because the corresponding changes in the meridional wind and horizontal temperature gradient are insignificant. The strengthened warm advection increases rainfall in the YRV by accelerating both adiabatic ascent and the ascent associated with diabatic heating primarily generated by convection. In midsummer, the EAWJ has no branches and is located over the midlatitudes of Asia. The strengthening of the EAWJ reduces rainfall in the YRV in midsummer through the Pacific–Japan (PJ) pattern. As the EAWJ strengthens, the PJ pattern turns to its positive phase. This results in the deceleration of the midtropospheric westerly wind and a reduction in the meridional temperature contrast, which weakens midtropospheric warm advection. The weakened warm advection in turn reduces rainfall in the YRV, following the process outlined for early summer.


Water ◽  
2021 ◽  
Vol 13 (18) ◽  
pp. 2580
Author(s):  
Ranran He ◽  
Yuanfang Chen ◽  
Qin Huang ◽  
Wenpeng Wang ◽  
Guofang Li

The western Pacific subtropical high (WPSH) is one of the key systems affecting the summer rainfall over the Yangtze River Valley in China. In this study, the forecasting capacity of the WPSH for summer rainfall and streamflow is evaluated based on the WPSH index (WPSHI) derived from the NCEP/NCAR reanalysis dataset. It has been found that WPSHI can identify extreme flood years with a higher skill than normal wet years. Specifically, exceedance probability forecasting based on WPSHI has higher skills for higher thresholds of rainfall. For streamflow, adding WPSHI as a predictor only enhances the skill for higher thresholds of streamflow relative to models based on antecedent streamflow. Under the same framework, performances of two postprocessing approaches for dynamical forecasts, i.e., the model output statistics (MOS) approach and the reanalysis-based (RAN) approach are compared. Hindcasts from Climate Forecast System version 2 from the National Center for Environmental Prediction (CFSv2) are used to calculate WPSHI, which is used as the predictor for rainfall and streamflow. The result shows that the RAN approach performs better than the MOS approach. This study emphasizes the fact that the forecasting skill of exceedance probability would largely depend on the selected threshold of the predictand, and this fact should be noticed in future studies in the long-term forecasting field.


2019 ◽  
Vol 64 (1) ◽  
pp. 92-104
Author(s):  
Ran-Ran He ◽  
Yuanfang Chen ◽  
Qin Huang ◽  
You Kang

2021 ◽  
pp. 1-40
Author(s):  
Qingzhe Zhu ◽  
Yuzhi Liu ◽  
Tianbin Shao ◽  
Run Luo ◽  
Ziyuan Tan

AbstractThe Tibetan Plateau (TP), the “Water Tower of Asia”, plays an important role in the water cycle. However, few studies have linked the TP’s water vapor supply with the climate over North China. In this study, we found that changes in the subtropical westerly jet (SWJ) dynamically induce drought in North China, and the TP plays an important role in this relationship. During July-August for the period of 1981-2019, the SWJ center between 75°E and 105°E obviously shifted northward at a rate of 0.04° per year. Correspondingly, the zonal winds in the southern subtropics were incredibly weakened, causing the outflow of water vapor from the TP to decrease dramatically. Combined with numerical simulations, we discovered that a reduction in water vapor transport from the TP can obviously decrease the precipitation over North China. Sensitivity experiments demonstrated that if the water vapor outflow from the eastern border of the TP decreases by 52.74%, the precipitation in North China will decrease by 12.69% due to a decrease in the local cloud fraction caused by a diminished water vapor content in the atmosphere. Therefore, although less water vapor transport occurs in the upper troposphere than in the lower troposphere, the impact of transport from the TP in the former on the downstream precipitation cannot be ignored.


Sign in / Sign up

Export Citation Format

Share Document