Stalked crinoids from Gan (Late Ypresian, southwestern France): exceptional stereom preservation, paleoecology and taxonomic affinities

2018 ◽  
Vol 137 (2) ◽  
pp. 225-244
Author(s):  
Didier Merle ◽  
Michel Roux
Paleobiology ◽  
1996 ◽  
Vol 22 (3) ◽  
pp. 339-351 ◽  
Author(s):  
Tatsuo Oji

The number of regenerated arms was counted on specimens of two distinct phenotypes of the stalked crinoidEndoxocrinus parrae(Gervais) from a wide bathymetric range in the Caribbean (178-723 m). In one phenotype, the sample was divided into two groups, one from shallower (< 500 m) depths, the other from deeper (≥ 500 m); in the other phenotype the group divided at 550 m. In both phenotypes, the frequency of regenerated arms is significantly higher in specimens from shallower water than in those from deeper water. If the regenerated arms inEndoxocrinus parraewere the result of sublethal predation, as previously suggested, then predation intensity is higher in shallow water than deep water. These results are consistent with the idea of the late Mesozoic marine revolution—that there has been stronger predation on various invertebrates in shallow-water environments since the late Mesozoic. The stalked crinoids may have been unable to cope with increased predation in shelf environments, and they migrated to offshore environments.


Zootaxa ◽  
2011 ◽  
Vol 2825 (1) ◽  
pp. 1 ◽  
Author(s):  
MICHEL ROUX ◽  
PHILIP LAMBERT

Two new species of deep-sea stalked crinoids belonging to the family Hyocrinidae were collected in the northeastern Pacific. The descriptions contain detailed information on character variations and ontogeny. The five specimens of Gephyrocrinus messingi n. sp. lived at depths ranging from 1,777 m to 2,110 m off British Columbia and California. This new species is the first record of the genus Gephyrocrinus in the Pacific Ocean, which was previously known from only a single species, G. grimaldii, from the northeastern Atlantic at the same depth range. The two species illustrate opposing phenotypes within the same genus. Fifty-eight specimens of the second new species, Ptilocrinus clarki n. sp., were dredged off British Columbia close to the type-locality of P. pinnatus, the type species of the genus Ptilocrinus, but at shallower depths ranging from 1,178 to 1,986 m. This exceptional collection provides significant data on intraspecific variation in the main morphological characters, especially arm pattern. The ontogeny of stalk articulations and the main traits of adoral plate differentiation are described in detail. A complementary investigation on P. pinnatus was conducted using specimens collected by the “Albatross” expedition at a depth of 2,906 m. Despite similarities in external morphology, tegmen and cover plates, the two ptilocrinid species display significant differences in pinnule architecture, aboral cup and stalk articulations. From comparison with Gephyrocrinus messingi n. sp. and Ptilocrinus clarki n. sp., G. grimaldii and P. pinnatus are interpreted as the result of heterochronic development by paedomorphy after ecological or geographic isolation. Pinnule architecture in the two new species suggests first steps in an evolutionary trend toward a rigid box which protects gonad inflation in the proximal part of the pinnule. These new data on Ptilocrinus and Gephyrocrinus create problems in the current taxonomy of the family Hyocrinidae. The main derived characters, especially in pinnule and arm pattern, are used to propose new hypotheses for hyocrinid phylogeny.


Paleobiology ◽  
1977 ◽  
Vol 3 (1) ◽  
pp. 74-82 ◽  
Author(s):  
David L. Meyer ◽  
Donald B. Macurda

Modern crinoids are dominated by the comatulids (unstalked forms) which range from the intertidal to abyssal depths. Modern stalked crinoids are restricted to depths greater than about 100 m. In the geologic past some stalked crinoids lived at depths of a few tens of meters or less in reef and bank environments. The primary vehicles postulated for the post-Triassic radiation of comatulids are lack of permanent fixation to the substratum and the capacity for mobility. Development of complex muscular articulations has enabled crawling or swimming which serve in habitat selection and avoidance of stress and predators. These and other adaptations may have bestowed on comatulids a higher survival capacity in shallow-water environments compared to stalked crinoids. Modern stalked crinoids lack mobility and complex behavioral adaptations seen in comatulids. Possibly, stalked crinoids in shallow water were unable to cope with the radiation of abundant, predaceous bony fishes in the late Mesozoic and became restricted to greater depths while the more adaptable comatulids gained ascendancy in shallow water.


1992 ◽  
Vol 6 ◽  
pp. 261-261
Author(s):  
Jennifer K. Schubert ◽  
David J. Bottjer

The Permian/Triassic mass extinction, the most devastating biotic crisis of the Phanerozoic, has aroused considerable scientific interest. However, because research has focused primarily on understanding the magnitude of diversity reduction and causal mechanisms, the nature and timing of biotic recovery in the Early Triassic are still poorly understood. Marine limestones in the Lower Triassic Moenkopi Formation, which disconformably overlies the Upper Permian of southeastern Nevada and southern Utah, provide a rare opportunity to study the aftermath of the mass extinction in shallow water carbonate environments.Two contemporaneous members of the Moenkopi record the first marine incursion from the northwest in the Early Triassic (Smithian), the very sparsely fossiliferous marginal marine Schnabkaib Member in Nevada and southwest Utah, and the Sinbad Limestone in central-southern Utah, a marine unit dominated by amalgamated and condensed fossil-rich beds. The Virgin Limestone member was deposited during a subsequent (Spathian) Early Triassic sea level rise, about 4-5 Ma following the Permian/Triassic boundary, and includes nearshore and inner shelf limestones characterized by fossiliferous storm beds.Because the fossiliferous limestones of the Smithian Sinbad and the Spathian Virgin were deposited in similar shallow subtidal settings, they provide an opportunity to compare and contrast the status of biotic rebound at different points along an Early Triassic “time transect.” Analysis of bulk samples reveals that the older Sinbad and younger Virgin are similar in each possessing 2-3 different benthic marine paleocommunities of low within-habitat species richness. There are, however, several important differences between the Sinbad and Virgin faunas. The richly fossiliferous Sinbad assemblages are primarily molluscan, composed of approximately 2-8 species of bivalves, which may or may not be accompanied by ammonoids and 0-11 species of gastropods. Small spines, possibly belonging to an echinoid, are numerous in some samples. Although bivalves are also abundant in Virgin Limestone assemblages, fossils of other higher taxa are well-represented, including abundant crinoid ossicles, common brachiopods, echinoid spines and plates, and rare ammonoids and gastropods. Sinbad faunas also appear to lack epibionts and borers, while they are present but not abundant in the Virgin.The addition from Sinbad to Virgin times of groups other than molluscs, with different life habits and strategies, most likely led to an increase in spatial partitioning and resource utilization, in particular the development of epifaunal tiering with the appearance of stalked crinoids in the Virgin. This pattern of earliest Triassic community dominance by molluscs followed by later more “Paleozoic-like” communities has been observed in other regions. Earliest Triassic paucity of epibionts and borers indicates significant reduction in the biotic component of taphonomic processes, including taphonomic feedback, when compared with other time intervals. Data from these Early Triassic assemblages thus indicate the initiation of both an evolutionary and an ecological rebound between Sinbad (Smithian) and Virgin (Spathian) times.


1992 ◽  
Vol 11 (2) ◽  
pp. 189-195 ◽  
Author(s):  
Andrew Racey

Abstract. Three new species of nummulites; Nummulites minutus sp. nov., N. omanensis sp. nov. and N. schaubi sp. nov., are described and illustrated from the Eocene of Northern Oman. N. omanensis sp. nov. and N. schaubi sp. nov. are shown to range from Early to Middle Lutetian whilst N. minutus sp. nov. ranges from Late Ypresian to Early Lutetian. N. minutus sp. nov. is far smaller in all major dimensions than any species of Nummulites previously described and if found in isolation would be assumed to be very primitive and probably dated as Late Palaeocene. However, N. minutus sp. nov. was found in association with an unreworked Lutetian fauna. The commonly held belief that proloculus size and test size are smallest in the most primitive (i.e. oldest) species must therefore be treated with some degree of caution.


2013 ◽  
Vol 154 (1) ◽  
pp. 25
Author(s):  
Antonio De Angeli ◽  
Loris Ceccon

The decapod crustaceans of the families Tetraliidae and Trapeziidae from the Early Eocene (middle-late Ypresian) of Monte Magrè (Schio, Vicenza, NE Italy), are described. The specimens are assigned to <em>Eurotetralia loerenthey</em> (Müller, 1975) n. gen., <em>Tetralia vicetina</em> n. sp. (Tetraliidae Castro, Ng &amp; Ahyong, 2004); <em>Archaeotetra lessinea</em> n. sp., <em>Eomaldivia trispinosa</em> Müller &amp; Collins, 1991, <em>Paratetralia convexa</em> Beschin, Busulini, De Angeli &amp; Tessier, 2007, and <em>Paratetralia sulcata</em> n. sp. (Trapeziidae Miers, 1886).<br />The specimens were discovered associated with other decapods, in the coral-rich limestone. This report is the oldest fossil record of both two families. The stratigraphical distribution of the Tetraliidae and Trapeziidae is extended back to the middle-late Ypresian.


Sign in / Sign up

Export Citation Format

Share Document