scholarly journals Native Ion Mobility Mass Spectrometry: When Gas-Phase Ion Structures Depend on the Electrospray Charging Process

2019 ◽  
Vol 30 (6) ◽  
pp. 1069-1081 ◽  
Author(s):  
Nina Khristenko ◽  
Jussara Amato ◽  
Sandrine Livet ◽  
Bruno Pagano ◽  
Antonio Randazzo ◽  
...  
2013 ◽  
Vol 85 (8) ◽  
pp. 4165-4171 ◽  
Author(s):  
Kazumi Saikusa ◽  
Sotaro Fuchigami ◽  
Kyohei Takahashi ◽  
Yuuki Asano ◽  
Aritaka Nagadoi ◽  
...  

The Analyst ◽  
2016 ◽  
Vol 141 (16) ◽  
pp. 4863-4869 ◽  
Author(s):  
Christopher B. Lietz ◽  
Zhengwei Chen ◽  
Chang Yun Son ◽  
Xueqin Pang ◽  
Qiang Cui ◽  
...  

Ion mobility-mass spectrometry (IM-MS) is often employed to look at the secondary, tertiary, and quaternary structures of naked peptides and proteins in the gas-phase.


2020 ◽  
Author(s):  
Hsin-Yung Yen ◽  
Idlir Liko ◽  
Joseph Gault ◽  
Di Wu ◽  
Weston B. Struwe ◽  
...  

AbstractThe immune scavenger protein DC-SIGN interacts with glycosylated proteins and has a putative role in facilitating viral infection. How these recognition events take place with different viruses is not clear and the effects of glycosylation on the folding and stability of DC-SIGN have not been reported. Here, we develop and apply a mass spectrometry-based approach to both uncover and characterise the effects of O-glycans on the stability of DC-SIGN. We first quantify the Core 1 & 2 O-glycan structures on the carbohydrate recognition and extracellular domains of the protein via sequential exoglycosidase sequencing. We then use ion mobility mass spectrometry to show how specific O-glycans, and/or single monosaccharide substitutions, alter both the overall collision cross section and the gas-phase stability of the glycoprotein isoforms of DC-SIGN. We find that rather than the mass or length of glycoprotein modifications, the stability of DC-SIGN is better correlated with the number of glycosylation sites. Collectively, our results exemplify a combined multi-dimensional MS approach, proficient in evaluating protein stability in response to both glycoprotein macro- and micro-heterogeneity and adding structural detail to the infection enhancer DC-SIGN.


Sign in / Sign up

Export Citation Format

Share Document