scholarly journals Correlating glycoforms of DC-SIGN with stability using a combination of enzymatic digestion and ion mobility MS

2020 ◽  
Author(s):  
Hsin-Yung Yen ◽  
Idlir Liko ◽  
Joseph Gault ◽  
Di Wu ◽  
Weston B. Struwe ◽  
...  

AbstractThe immune scavenger protein DC-SIGN interacts with glycosylated proteins and has a putative role in facilitating viral infection. How these recognition events take place with different viruses is not clear and the effects of glycosylation on the folding and stability of DC-SIGN have not been reported. Here, we develop and apply a mass spectrometry-based approach to both uncover and characterise the effects of O-glycans on the stability of DC-SIGN. We first quantify the Core 1 & 2 O-glycan structures on the carbohydrate recognition and extracellular domains of the protein via sequential exoglycosidase sequencing. We then use ion mobility mass spectrometry to show how specific O-glycans, and/or single monosaccharide substitutions, alter both the overall collision cross section and the gas-phase stability of the glycoprotein isoforms of DC-SIGN. We find that rather than the mass or length of glycoprotein modifications, the stability of DC-SIGN is better correlated with the number of glycosylation sites. Collectively, our results exemplify a combined multi-dimensional MS approach, proficient in evaluating protein stability in response to both glycoprotein macro- and micro-heterogeneity and adding structural detail to the infection enhancer DC-SIGN.

2018 ◽  
Author(s):  
Valerie Gabelica ◽  
Alexandre A. Shvartsburg ◽  
Carlos Afonso ◽  
Perdita E. Barran ◽  
Justin L. P. Benesch ◽  
...  

Here we present a guide on ion mobility mass spectrometry experiments, which covers both linear and nonlinear methods: what is measured, how the measurements are done, and how to report the results, including the uncertainties on mobility and collision cross section values. The guide aims to clarify some possibly confusing concepts, and the reporting recommendations should help researchers, authors and reviewers to contribute comprehensive reports, so that the ion mobility data can be reused more confidently. Starting from the concept of the definition of the measurand, we emphasize that (i) mobility values (K0) depend intrinsically on ion structure, the nature of the bath gas, temperature, and E/N, (ii) ion mobility does not measure surfaces directly, but collision cross section (CCS) values are derived from mobility values using a physical model, (iii) methods relying on calibration are empirical (and thus may provide method-dependent results) only if the gas nature, temperature or E/N cannot match those of the primary method. Our analysis highlights the urgency of a community effort towards establishing primary standards and reference materials for ion mobility, and provides recommendations to do so. <br><br><br>


The Analyst ◽  
2018 ◽  
Vol 143 (4) ◽  
pp. 949-955 ◽  
Author(s):  
Li Li ◽  
Kristin R. McKenna ◽  
Zhao Li ◽  
Mahipal Yadav ◽  
Ramanarayanan Krishnamurthy ◽  
...  

Identifying small sugar isomers can be challenging by ion mobility-mass spectrometry (IM-MS) alone due to their small collision cross section differences.


2019 ◽  
Vol 30 (6) ◽  
pp. 1069-1081 ◽  
Author(s):  
Nina Khristenko ◽  
Jussara Amato ◽  
Sandrine Livet ◽  
Bruno Pagano ◽  
Antonio Randazzo ◽  
...  

2013 ◽  
Vol 85 (8) ◽  
pp. 4165-4171 ◽  
Author(s):  
Kazumi Saikusa ◽  
Sotaro Fuchigami ◽  
Kyohei Takahashi ◽  
Yuuki Asano ◽  
Aritaka Nagadoi ◽  
...  

2012 ◽  
Vol 48 (37) ◽  
pp. 4423-4425 ◽  
Author(s):  
Jakub Ujma ◽  
Martin De Cecco ◽  
Oleg Chepelin ◽  
Hannah Levene ◽  
Chris Moffat ◽  
...  

Ion mobility mass spectrometry distinguishes between isobaric supramolecular complexes, revealing subtle structural differences and their effect on the stability of self assembled architectures.


2012 ◽  
Vol 65 (5) ◽  
pp. 504 ◽  
Author(s):  
Antonio N. Calabrese ◽  
Lauren A. Speechley ◽  
Tara L. Pukala

This study demonstrates the ability of travelling wave ion mobility-mass spectrometry to measure collision cross-sections of ions in the negative mode, using a calibration based approach. Here, negative mode ion mobility-mass spectrometry was utilised to understand structural transitions of calmodulin upon Ca2+ binding and complexation with model peptides melittin and the plasma membrane Ca2+ pump C20W peptide. Coexisting calmodulin conformers were distinguished on the basis of their mass and cross-section, and identified as relatively folded and unfolded populations, with good agreement in collision cross-section to known calmodulin geometries. Titration of calcium tartrate to physiologically relevant Ca2+ levels provided evidence for intermediately metalated species during the transition from apo- to holo-calmodulin, with collision cross-section measurements indicating that higher Ca2+ occupancy is correlated with more compact structures. The binding of two representative peptides which exemplify canonical compact (melittin) and extended (C20W) peptide-calmodulin binding models has also been interrogated by ion mobility mass spectrometry. Peptide binding to calmodulin involves intermediates with metalation states from 1–4 Ca2+, which demonstrate relatively collapsed structures, suggesting neither the existence of holo-calmodulin or a pre-folded calmodulin conformation is a prerequisite for binding target peptides or proteins. The biological importance of the different metal unsaturated calmodulin complexes, if any, is yet to be understood.


Sign in / Sign up

Export Citation Format

Share Document