Material Damage Evolution for Plain and Steel-Fiber-Reinforced Concrete Under Unconfined Compression Loading by Dynamic Ultrasonic Tests

2018 ◽  
Vol 43 (10) ◽  
pp. 5667-5675 ◽  
Author(s):  
José Alfredo León Ramírez ◽  
Lizarazo-Marriaga Juan ◽  
Julian Carrillo
2008 ◽  
Vol 385-387 ◽  
pp. 673-676
Author(s):  
Ji Wang ◽  
Ming Zhong Zhang ◽  
Xiao Chun Fan

In order to study the damage evolution law for layered fiber reinforced concrete subjected to flexural fatigue, the flexural fatigue tests were carried out on both layered steel fiber reinforced concrete(LSFRC) and layered hybrid fiber reinforced concrete(LHFRC) beams of which the type of steel fiber was uniform on the same concrete mix. At the same time the flexural fatigue tests with original concrete(OC) were carried out. Based on the experiments, both flexural fatigue life and damage characteristic of LSFRC LHFRC and OC were compared and analyzed. The results indicated that the fatigue life of LHFRC was a little larger than that of LSFRC under the stress level, which was more than an order of magnitude of OC. And the fatigue distortion of LSFRC, LHFRC and OC were similar. They all followed three-phase law. However, the proportion of every phase was different, which proved that layered steel fibers and polypropylene fibers could effectively restrain the degradation of concrete.


2017 ◽  
Vol 730 ◽  
pp. 353-357
Author(s):  
Meng Meng Guo ◽  
Zhong Ren Feng ◽  
Yang Chen

Using the material testing machine of electro-hydraulic servo fatigue tests had been carried out on ordinary concrete and steel fiber reinforced concrete. The fatigue life, strength, stress and strain had been measured under tension and compression loading. The variation of fatigue was analyzed based on the test results. Having regression analysis, obtained the fatigue strength. Mean-while, the fatigue strain-life curves of ordinary concrete and steel fiber reinforced concrete had been made after data processing. The results had been showed that the fatigue property of steel fiber reinforced concrete was significantly higher than that of ordinary concrete. And the fatigue strength increased about 32.6% compared with ordinary concrete. The tensile and compressive fatigue strain were slightly smaller than that of ordinary concrete.


2017 ◽  
Vol 59 (7-8) ◽  
pp. 653-660 ◽  
Author(s):  
Wang Yan ◽  
Ge Lu ◽  
Chen Shi Jie ◽  
Zhou Li ◽  
Zhang Ting Ting

2021 ◽  
pp. 136943322098165
Author(s):  
Hossein Saberi ◽  
Farzad Hatami ◽  
Alireza Rahai

In this study, the co-effects of steel fibers and FRP confinement on the concrete behavior under the axial compression load are investigated. Thus, the experimental tests were conducted on 18 steel fiber-reinforced concrete (SFRC) specimens confined by FRP. Moreover, 24 existing experimental test results of FRP-confined specimens tested under axial compression are gathered to compile a reliable database for developing a mathematical model. In the conducted experimental tests, the concrete strength was varied as 26 MPa and 32.5 MPa and the steel fiber content was varied as 0.0%, 1.5%, and 3%. The specimens were confined with one and two layers of glass fiber reinforced polymer (GFRP) sheet. The experimental test results show that simultaneously using the steel fibers and FRP confinement in concrete not only significantly increases the peak strength and ultimate strain of concrete but also solves the issue of sudden failure in the FRP-confined concrete. The simulations confirm that the results of the proposed model are in good agreement with those of experimental tests.


1984 ◽  
Vol 21 (3) ◽  
pp. 108-111
Author(s):  
V. S. Sterin ◽  
V. A. Golubenkov ◽  
G. S. Rodov ◽  
B. V. Leikin ◽  
L. G. Kurbatov

Sign in / Sign up

Export Citation Format

Share Document