Comparative Investigation of Water-Based Al2O3 Nanoparticles Through Water-Based CuO Nanoparticles Over an Exponentially Accelerated Radiative Riga Plate Surface via Heat Transport

Author(s):  
Kanayo K. Asogwa ◽  
F. Mebarek-Oudina ◽  
I. L. Animasaun
2017 ◽  
Vol 6 (4) ◽  
pp. 83 ◽  
Author(s):  
Gaurav Thakur ◽  
Gurpreet Singh

The thermal performance of shell and tube heat exchangers has been enhanced with the use of different techniques. Air bubble injection is one such promising and inexpensive technique that enhances the heat transfer characteristics inside shell and tube heat exchanger by creating turbulence in the flowing fluid. In this paper, experimental study on heat transfer characteristics of shell and tube heat exchanger was done with the injection of air bubbles at the tube inlet and throughout the tube with water based Al2O3 nanofluids i.e. (0.1%v/v and 0.2%v/v). The outcomes obtained for both the concentrations at two distinct injection points were compared with the case when air bubbles were not injected. The outcomes revealed that the heat transfer characteristics enhanced with nanoparticles volumetric concentration and the air bubble injection. The case where air bubbles were injected throughout the tube gave maximum enhancement followed by the cases of injection of air bubbles at the tube inlet and no air bubble injection. Besides this, water based Al2O3 nanofluid with 0.2%v/v of Al2O3 nanoparticles gave more enhancement than Al2O3nanofluid with 0.1%v/v of Al2O3 nanoparticles as the enhancement in the heat transfer characteristics is directly proportional to the volumetric concentration of nanoparticles in the base fluid. The heat transfer rate showed an enhancement of about 25-40% and dimensionless exergy loss showed an enhancement of about 33-43% when air bubbles were injected throughout the tube. Moreover, increment in the heat transfer characteristics was also found due to increase in the temperature of the hot fluid keeping the flow rate of both the heat transfer fluids constant.


Author(s):  
Pitchayut Dejtaradon ◽  
Hossein Hamidi ◽  
Michael Halim Chuks ◽  
David Wilkinson ◽  
Roozbeh Rafati

2017 ◽  
Vol 7 ◽  
pp. 3648-3658 ◽  
Author(s):  
Z. Iqbal ◽  
Ehtsham Azhar ◽  
Zaffar Mehmood ◽  
E.N. Maraj

Crystals ◽  
2021 ◽  
Vol 11 (4) ◽  
pp. 400
Author(s):  
Umair Khan ◽  
Aurang Zaib ◽  
Ilyas Khan ◽  
Kottakkaran Sooppy Nisar

Nanofluids offer the potential to improve heat transport performance. In light of this, the current exploration gives a numerical simulation of mixed convection flow (MCF) using an effective Prandtl model and comprising water- and ethylene-based γγ−Al2O3 particles over a stretched vertical sheet. The impacts of entropy along with non-linear radiation and viscous dissipation are analyzed. Experimentally based expressions of thermal conductivity as well as viscosity are utilized for γγ−Al2O3 nanoparticles. The governing boundary-layer equations are stimulated numerically utilizing bvp4c (boundary-value problem of fourth order). The outcomes involving flow parameter found for the temperature, velocity, heat transfer and drag force are conferred via graphs. It is determined from the obtained results that the temperature and velocity increase the function of the nanoparticle volume fraction for H2O\C2H6O2 based γγ−Al2O3 nanofluids. In addition, it is noted that the larger unsteady parameter results in a significant advancement in the heat transport and friction factor. Heat transfer performance in the fluid flow is also augmented with an upsurge in radiation.


Sign in / Sign up

Export Citation Format

Share Document