scholarly journals A linear preserver problem on maps which are triple derivable at orthogonal pairs

Author(s):  
Ahlem Ben Ali Essaleh ◽  
Antonio M. Peralta
2020 ◽  
Author(s):  
Paul-Joseph Aspuria ◽  
Michele Bauer ◽  
Sandro Vivona ◽  
Steven E. Kauder ◽  
Scott McCauley ◽  
...  
Keyword(s):  
T Cell ◽  
Car T ◽  

1995 ◽  
Vol 303 (1) ◽  
pp. 165-184 ◽  
Author(s):  
Vladimir P. Platonov ◽  
Dragomir Ž. Doković

2016 ◽  
Vol 9 (3) ◽  
pp. 649-656 ◽  
Author(s):  
Neng-Wu Liu ◽  
Lei Zhu ◽  
Wai-Wa Choi

A low-profile circularly polarized (CP) slot antenna to achieve a wide axial-ratio (AR) beamwidth is proposed in this paper. The radiating patch consists of two orthogonal pairs of parallel slots etched symmetrically onto a ground plane. Firstly, our theoretical study demonstrates that the CP radiation can be satisfactorily achieved at the broadside, when the vertical and horizontal paired-slots are excited in the same amplitude with 90° phase difference. Secondly, the principle of CP radiation of the proposed antenna on an infinite ground plane is described. Through analyzing the spacing between two parallel slots, the |Eθ| and |Eφ| radiation patterns can be made approximately identical with each other over a large angle range. As such, the slot antenna achieves a wide AR beamwidth. After that, the 3 dB AR beamwidth with respect to the size of a finite ground plane is investigated to constitute a practical CP antenna on a finite ground plane. In final, the proposed CP antenna with a 1–4 probe-to-microstrip feeding network is designed and fabricated on a finite ground plane of a dielectric substrate. Measured results are shown to be in good agreement with the simulated ones about the gain, reflection coefficient, AR bandwidth, and radiation patterns. Most importantly, a wide 3 dB AR beamwidth of 126° and low-profile property with the height of 0.036λ0 are achieved.


Geophysics ◽  
1999 ◽  
Vol 64 (4) ◽  
pp. 1193-1201 ◽  
Author(s):  
Xiang‐Yang Li

An algorithm is proposed for determining the fracture orientation based on the azimuthal variations in the P-wave reflection moveout for a target interval. The differential moveout between orthogonal survey lines from the bottom of a given target shows cos 2ϕ variations with the line azimuth ϕ measured from the fracture strike for a fixed offset. A configuration of four intersecting survey lines may be used to quantify the fracture strike. The four lines form two orthogonal pairs, and the fracture strike can be obtained by analyzing the crossplot of the two corresponding pairs of the differential moveouts. An offset‐depth ratio (x/z) of 1.0 or greater (up to 1.5) is often required to quantify the moveout difference reliably. The sensitivity of the method is further enhanced by low/high impedance contrast at the top target interface but is greatly reduced by high/low impedance contrast. The method may be particularly useful in marine exploration with repeated surveys of various vintages where continuous azimuthal coverage is often not available. A data set from the North Sea is used to illustrate the technique.


Sign in / Sign up

Export Citation Format

Share Document