Mathematical modeling for the performance and emission parameters of dual-fuel diesel engine using producer gas as secondary fuel

2014 ◽  
Vol 5 (3) ◽  
pp. 257-270 ◽  
Author(s):  
A. E. Dhole ◽  
R. B. Yarasu ◽  
D. B. Lata ◽  
S. S. Baraskar ◽  
Deepika Shaw
2021 ◽  
pp. 1-25
Author(s):  
Chandrakanta Nayak ◽  
Bhabani Prasanna Pattanaik ◽  
Jibitesh Kumar Panda

Abstract Experiments are performed on a diesel engine working in single fuel mode using fossil diesel (FD) as well as 5% and 10% (v/v) di-ethyl ether (DEE) additives with FD as fuels as well as in dual fuel mode using the above fuels as pilot fuels along with producer gas (PG) as primary fuel. This study aims to draw comparative analyses of engine combustion, performance and emission characteristics using the above fuel combinations to establish the most suitable fuel strategy for a diesel engine. The study revealed greater control over nitric oxide (NO) and smoke opacity in dual fuel mode compared to single fuel mode operations. Addition of DEE with FD, produced lower HC and CO emissions, comparable NO emissions along with reduced smoke opacity compared to FD in both modes of operation. Further, in dual fuel mode operation, the diesel percentage energy substitution (PES) reduced with increase in DEE content in the blends. The tradeoff study involving engine performance and emissions with respect to the cost of operation revealed that the fuel strategy used in dual fuel mode operation delivered better engine performance along with reduced NO emission and smoke opacity at lower operational cost compared to all the considered fuel strategy in single fuel mode operation. Especially, FD+5% DEE+PG and FD+10% DEE+PG fuel strategies were found to be the most suitable dual fuel mode combinations in a diesel engine in terms of their superior engine performance, lower emissions along with better economy.


2021 ◽  
Vol 850 (1) ◽  
pp. 012005
Author(s):  
Nikhil Muthu Kumar ◽  
Harsh Bhavsar ◽  
G Sakthivel ◽  
Mohammed Musthafa Feroskhan ◽  
K Karunamurthy

Abstract The introduction of the strict emissions norms is diverting the research for the development of new technologies which leads to the reduction of engine exhaust emissions. The usage of biodiesel in CI engine can enhance air quality index and protects the environment. Biodiesel can do an increment in the life of CI engines because it is clean-burning and a stable fuel when compared to diesel. Moreover, biogas has the potential to decrease both nitrogen oxides and smoke emissions simultaneously. Operating the engine in dual-fuel mode can provide lower emissions and a proper substitute for diesel. In this research, a modified CI Engine with single cylinder is used. Biogas is used as primary fuel and diesel, Mahua oil-diesel blend and Fish oil-diesel blend are used as secondary fuel. The effect of various secondary fuel blends on performance and emission characteristics in dual fuel engine are compared. In light of the performance and emission qualities it is reasoned that, utilization of the dual fuel mode in engine signifies the durability and lessens the harmful emissions from the engine with the exception of hydrocarbon and CO emissions. The excessive viscosity of fish oil and mahua oil prompts inconvenience in siphoning and spray attributes. The incompetent mixing of raw fish oil and raw mahua oil with diesel and biogas including air leads to incomplete combustion.


Author(s):  
Yasufumi Yoshimoto ◽  
Eiji Kinoshita

This paper investigates the performance, exhaust emissions, and combustion characteristics of a dual fuel diesel engine fueled by CNG (compressed natural gas) as the main fuel. The experiments used standard ignition fuels prepared by n-hexadecane and heptamethylnonane which are used to define the ignitability of diesel combustion, and focused on the effects of fuels with better ignitability than ordinary gas oil such as fuels with higher cetane numbers, 70 and 100. Compared with gas oil ignition, a standard ignition fuel with C.N. 100 showed shorter ignition delays, and lower NOx exhaust concentrations, and engine noise. The results also showed that regardless of ignition fuel, misfiring occurred when the CNG supply was above 75%. While the CNG ratio where misfiring occurs lowered somewhat with increasing C.N., the combustion stability (defined as the standard deviation in the cycle to cycle variation of IMEP divided by the mean value of IMEP) was little influenced. In summary, the results show that the influence of the ignitability on the engine performance and emission characteristics of the dual fuel operation is relatively small when the ignition fuel has C.N., and similar to or higher than ordinary gas oil.


Sign in / Sign up

Export Citation Format

Share Document