Combustion Characteristics of a Dual Fuel Diesel Engine With Natural Gas (Influence of Cetane Number of Ignition Fuel)

Author(s):  
Yasufumi Yoshimoto ◽  
Eiji Kinoshita

This paper investigates the performance, exhaust emissions, and combustion characteristics of a dual fuel diesel engine fueled by CNG (compressed natural gas) as the main fuel. The experiments used standard ignition fuels prepared by n-hexadecane and heptamethylnonane which are used to define the ignitability of diesel combustion, and focused on the effects of fuels with better ignitability than ordinary gas oil such as fuels with higher cetane numbers, 70 and 100. Compared with gas oil ignition, a standard ignition fuel with C.N. 100 showed shorter ignition delays, and lower NOx exhaust concentrations, and engine noise. The results also showed that regardless of ignition fuel, misfiring occurred when the CNG supply was above 75%. While the CNG ratio where misfiring occurs lowered somewhat with increasing C.N., the combustion stability (defined as the standard deviation in the cycle to cycle variation of IMEP divided by the mean value of IMEP) was little influenced. In summary, the results show that the influence of the ignitability on the engine performance and emission characteristics of the dual fuel operation is relatively small when the ignition fuel has C.N., and similar to or higher than ordinary gas oil.

2016 ◽  
Vol 82 (835) ◽  
pp. 15-00542-15-00542 ◽  
Author(s):  
Yasufumi YOSHIMOTO ◽  
Masayuki YAMADA ◽  
Eiji KINOSHITA ◽  
Kazuyo FUSHIMI

2018 ◽  
Vol 9 (1) ◽  
pp. 2137-2150
Author(s):  
Nono Sukirno ◽  
Dwi Prasetyo ◽  
Moh. Aziz Rohman

Dual Fuel Diesel Engine (Mesin Bahan Bakar Ganda) merupakan mesin denganpemanfaatan dua bahan bakar dalam proses pembakarannya untuk memperoleh tenaga kerjapada mesin. Jenis bahan bakar yang digunakan meliputi bahan bakar Methane Gas (CH4)dan MGO (Marine Gas Oil). Methane (CH4) dihasilkan dari Vapour Cargo Tank LNG(Liquified Natural Gas). Tujuan dari penelitian ini adalah untuk mengetahui apa sajapenyebab tingginya suhu gas buang terhadap kinerja Dual Fuel Diesel Engine di MV.Tangguh Palung dengan menggunakan metode analisis data Fault Tree Analysis. Darianalisis data penelitian di hasilkan beberapa rumusan masalah yaitu, faktor-faktor yangdapat menyebabkan tingginya suhu gas buang pada Dual Fuel Diesel Engine adalahkurangnya suplai udara pembakaran dalam ruang pembakaran mesin, komposisipembakaran yang tidak sesuai antara bahan bakar minyak dan gas, serta suhu Engine Roomyang terlalu panas. Dampak yang di timbulkan adalah kerusakan pada komponen-komponenpermesinan dan penurunan kinerja dari Dual Fuel Diesel Engine. Untuk mengatasipenurunan kerja pada Dual Fuel Diesel Engine adalah dengan melaksanakan perawatan danperbaikan pada setiap komponen permesinan yang mengalami masalah dan kerusakan sesuaidengan Running Hours dan Instruction Manual Book.


2021 ◽  
pp. 1-25
Author(s):  
Chandrakanta Nayak ◽  
Bhabani Prasanna Pattanaik ◽  
Jibitesh Kumar Panda

Abstract Experiments are performed on a diesel engine working in single fuel mode using fossil diesel (FD) as well as 5% and 10% (v/v) di-ethyl ether (DEE) additives with FD as fuels as well as in dual fuel mode using the above fuels as pilot fuels along with producer gas (PG) as primary fuel. This study aims to draw comparative analyses of engine combustion, performance and emission characteristics using the above fuel combinations to establish the most suitable fuel strategy for a diesel engine. The study revealed greater control over nitric oxide (NO) and smoke opacity in dual fuel mode compared to single fuel mode operations. Addition of DEE with FD, produced lower HC and CO emissions, comparable NO emissions along with reduced smoke opacity compared to FD in both modes of operation. Further, in dual fuel mode operation, the diesel percentage energy substitution (PES) reduced with increase in DEE content in the blends. The tradeoff study involving engine performance and emissions with respect to the cost of operation revealed that the fuel strategy used in dual fuel mode operation delivered better engine performance along with reduced NO emission and smoke opacity at lower operational cost compared to all the considered fuel strategy in single fuel mode operation. Especially, FD+5% DEE+PG and FD+10% DEE+PG fuel strategies were found to be the most suitable dual fuel mode combinations in a diesel engine in terms of their superior engine performance, lower emissions along with better economy.


2012 ◽  
Vol 2012 (0) ◽  
pp. 119-120
Author(s):  
Ryuki YOSHIMOTO ◽  
Eiji KINOSHITA ◽  
Yasufumi YOSHIMOTO

Sign in / Sign up

Export Citation Format

Share Document