Trade-off Study on Economy and Environmental Aspects of a Dual Fuel Diesel Engine using Diesel Additive and Producer Gas

2021 ◽  
pp. 1-25
Author(s):  
Chandrakanta Nayak ◽  
Bhabani Prasanna Pattanaik ◽  
Jibitesh Kumar Panda

Abstract Experiments are performed on a diesel engine working in single fuel mode using fossil diesel (FD) as well as 5% and 10% (v/v) di-ethyl ether (DEE) additives with FD as fuels as well as in dual fuel mode using the above fuels as pilot fuels along with producer gas (PG) as primary fuel. This study aims to draw comparative analyses of engine combustion, performance and emission characteristics using the above fuel combinations to establish the most suitable fuel strategy for a diesel engine. The study revealed greater control over nitric oxide (NO) and smoke opacity in dual fuel mode compared to single fuel mode operations. Addition of DEE with FD, produced lower HC and CO emissions, comparable NO emissions along with reduced smoke opacity compared to FD in both modes of operation. Further, in dual fuel mode operation, the diesel percentage energy substitution (PES) reduced with increase in DEE content in the blends. The tradeoff study involving engine performance and emissions with respect to the cost of operation revealed that the fuel strategy used in dual fuel mode operation delivered better engine performance along with reduced NO emission and smoke opacity at lower operational cost compared to all the considered fuel strategy in single fuel mode operation. Especially, FD+5% DEE+PG and FD+10% DEE+PG fuel strategies were found to be the most suitable dual fuel mode combinations in a diesel engine in terms of their superior engine performance, lower emissions along with better economy.

2020 ◽  
Vol 18 (2) ◽  
pp. 108-112
Author(s):  
Ashok Kumar ◽  
Piyushi Nautiyal ◽  
Kamalasish Dev

The present study is investigated on the performance and emissions characteristics of a diesel engine fuelled by compressed natural gas and base diesel (CNG + Diesel). The CNG fuels used as the primary fuel, and diesel as pilot fuel under dual-fuel mode. The pilot fuel is partially replaced by CNG at a different percentage. The primary fuel is injected into the engine with intake air during the suction stroke. The experimental results reveal the effect of CNG + diesel under dual fuel mode on BTE, BSFC, CO, CO2, HC, NOx and Smoke. It is observed from the experimental results that CO2, NOx and Smoke emissions decreased but HC and CO emissions increase with an increase in CNG energy share.


2020 ◽  
Vol 44 (3) ◽  
pp. 385-394
Author(s):  
Karthikeyan Rangaraju ◽  
Neelakrishnan Subramanyan

Engine performance and emission characteristics were investigated using a single cylinder four-stroke diesel engine with different concentrated intermetallic-based Al–Fe–Mg–Si pistons. Three different alloy combinations (types A, B, and C) of Al–Fe–Mg–Si pistons were developed through the incremental alloying addition of Fe, Mg, Mn, Cu, and Ni. Piston types A, B, and C had Fe-rich intermetallic compounds (IMC), where types B and C had a higher density IMC distribution than type A. The influence of Fe, Mg, Mn, Cu, and Ni alloyed IMC pistons on engine performance and emissions was investigated at various loading conditions. Combustion characteristics such as cylinder pressure and net heat release rate for all piston types were investigated and compared. A similar duration of ignition was seen for all piston types. Frictional loss was reduced by ∼25% in types B and C in comparison to type A. Similarly, mechanical and thermal efficiency were enhanced considerably in types B and C compared to type A. Emission characteristics were also investigated for all piston types. Results showed that NOx was reduced by ∼17.3% with the use of types B and C.


This research work investigated the diesel engine performance using 20% Pongamia grease methyl ester through the effect of different flow rates of acetylene using dual-fuel technique. Acetylene be inducted within the intake various at the flow rates of 1lpm, 2lpm, 3lpm and 4lpm along with air. Initially a test was conducted by diesel fuel along with POME20 on different loads. Then the experiment was carried out with POME20 with different flow rates of acetylene. Addition of acetylene increased the brake thermal efficiency (BTE) among POME20 at all acetylene flow rates on 100% load. The results showed that the BTE was enhanced via regarding 1–3.4% at knock-limited acetylene shares at 100% load. The engine emits higher NOx emission for POME20 without acetylene share and then it is additional improved with the adding up of acetylene shares, while the smoke opacity was reduced by 47% with acetylene addition at complete load. Here is a decrease in HC as well as CO emissions were experiential through an acetylene orientation along with POME20. Finally, it is suggested that the poor presentation as well as emissions connected through biodiesel into a diesel engine can be improved through the induction of acetylene with 4lpm flow rate in the intake various by dual fuel technology.


Fuel ◽  
2021 ◽  
Vol 302 ◽  
pp. 121097
Author(s):  
M. Mourad ◽  
Khaled R.M. Mahmoud ◽  
El-Sadek H. NourEldeen

Sign in / Sign up

Export Citation Format

Share Document