Enhanced short-chain carboxylic acids yield in dark fermentation by cyclic product removal

Author(s):  
Muhammad Tahir Ashraf ◽  
Juan-Rodrigo Bastidas-Oyanedel ◽  
Ashfaq Ahmad ◽  
Abdul Hai ◽  
Hanifa Taher AlBlooshi ◽  
...  
Fuel ◽  
2021 ◽  
Vol 289 ◽  
pp. 119943
Author(s):  
Patrícia T. Souza ◽  
Willian L.G. Silva ◽  
Antonio J.A. Meirelles ◽  
Matthieu Tubino

1977 ◽  
Vol 55 (12) ◽  
pp. 2404-2410 ◽  
Author(s):  
Douglas M. Chen ◽  
Fred Y. Fujiwara ◽  
Leonard W. Reeves

The degree of order of solubilized molecules and ions in oriented lyomesophases has been determined at specifically deuterated C—D bond axes from the quadrupole splitting of the deuterium magnetic resonance. Mixtures at low concentration of specifically deuterated alkanes, alcohols, carboxylic acids, and carboxylates of different chain length have been observed in host cationic and anionic lyomesophases. The degree of order of a given C—D position in alcohols increases strongly with chain length up to a length comparable with the host detergent. A broad series of carboxylic acids and carboxylate ions from C2 to C16 have been deuterated in the α position. The α-C—D bond axis in the solubilisate increases in order with chain length, the anion having lower order than the parent acid. An accurately linear increase in the degree of order of the α position is observed for intermediate chain lengths. At chain lengths approximately equal to the host chain lengths the α position reaches a limiting value in the degree of order and further segments do not influence the order. At short chain lengths the degree of order is less than that predicted from extrapolation of order in the linear region. This has been interpreted in terms of distribution into the aqueous compartment by the solubilisates of short chain length. Acetic acid and the acetate, propionate, butanoate, and pentanoate ions spend an appreciable amount of time in the aqueous region. An estimate has been made of these distributions based on reasonable assumptions.


2002 ◽  
Vol 278 (13) ◽  
pp. 11312-11319 ◽  
Author(s):  
Andrew J. Brown ◽  
Susan M. Goldsworthy ◽  
Ashley A. Barnes ◽  
Michelle M. Eilert ◽  
Lili Tcheang ◽  
...  

2020 ◽  
Vol 63 (2) ◽  
pp. 445-454 ◽  
Author(s):  
Qitao Cao ◽  
Wanqin Zhang ◽  
Yunhao Zheng ◽  
Tianjing Lian ◽  
Hongmin Dong

HighlightsThe maximum SCCA concentration was achieved at a C/N ratio of 25 with 18 days of fermentation.The highest VFAs and LA were produced at C/N ratios of 12.7 and 35, respectively, after 12 days of fermentation.The unit energy value of SCCAs for drop-in fuel production was 50.5% higher than that of methane.The dominant bacteria changed from Clostridium to Lactobacillus with increasing C/N ratio.Abstract. Advancing technologies to produce short-chain carboxylic acids (SCCAs) from agricultural waste are expected to be more economical and efficient. This study presented a new attempt to enhance SCCA production from co-digestion of swine manure and corn silage with the carbon-nitrogen (C/N) ratio adjusted from 12.7 to 50.2. Results showed that the maximum SCCA concentration of 26,214 ±2948 mg COD L-1 was achieved at a C/N ratio of 25 with 18 days of digestion, and the concentrations of lactic acid (LA) and volatile fatty acids (VFAs) were 8700 ±1060 mg COD L-1 and 17,514 ±1888 mg COD L-1, respectively. The LA content first increased and then slightly decreased with increasing C/N ratio, and the maximum LA concentration was 468.5 ±44.3 mg COD g-1 VSadded (VSadded means added fermentation material is calculated as volatile solids) at a C/N ratio of 35 at 12 days of digestion. VFAs showed an opposite trend, with a maximum VFA concentration of 601.1 ±42.4 mg COD g-1 VSadded found at a C/N ratio of 12.7 after 12 days of digestion. Potential energy analysis of the highest SCCA production showed that the unit energy value of SCCAs for drop-in fuel production was 50.5% higher than that of methane. Analysis of the microbial community showed that the dominant bacterial groups changed gradually from butyric acid-producing bacteria (Clostridium) to lactic acid-producing bacteria (Lactobacillus) as the C/N ratio increased from 12.7 to 50.2. Keywords: Anaerobic digestion, Corn silage, Lactic acid, Short-chain carboxylic acids, Swine manure.


Sign in / Sign up

Export Citation Format

Share Document