Anaerobic digestion of toluene-laden wastewater under oxygen-deficient mesophilic condition and concurrent retrieval of methane-enriched biogas

Author(s):  
Wasi Ur Rahman ◽  
Mohammad Danish Khan ◽  
Benazir Khurshid ◽  
Mohammad Zain Khan ◽  
Gopinath Halder
2013 ◽  
Vol 67 (4) ◽  
pp. 756-763 ◽  
Author(s):  
Chirag M. Mehta ◽  
Damien J. Batstone

This study aims to investigate solubilization of elements (P, N, K, Ca and Mg) during anaerobic digestion (AD) of solid agriculture waste. It is important to maintain particularly phosphorous in the aqueous phase to be able to subsequently recover it in a concentrated form via crystallization. Batch AD was carried out at a mesophilic condition (37 °C) and pH 7.0 ± 0.2 on a variety of piggery and poultry solid waste streams. Less than 10% of the total P, Ca and Mg was in soluble form in the digestate. Most of the N and K remained soluble in the digestate. A bioavailability test (citric acid extraction) showed P, Ca and Mg in the digestate were totally available. Complete solubilization of P, Ca and Mg occurred below a threshold of pH 5.5. This indicates these nutrients were released during digestion, and then either bound to form inorganic compounds or adsorbed on solid surfaces in the digestate. These effects reduce the feasibility of post-digestion recovery of the nutrients via struvite crystallization. Strategies to improve nutrient solubilization and recovery during the AD include addition of complexing chemicals, operation at depressed pH, or otherwise modifying the operating conditions.


2013 ◽  
Vol 777 ◽  
pp. 139-142
Author(s):  
Li Han ◽  
Ru Ying Li ◽  
Min Ji

In order to improve the methane yield and removal efficiency of organic matters in anaerobic sludge digestion, effects of addition of food waste were investigated at mesophilic condition. Results showed that the optimal TS ratio between sewage sludge and food waste was 4:1, with a methane yield of 592.7 ml/g-VS, methane content of 66.84% and the VS removal efficiency of 31%, which were 47%, 50% and 55% higher than those of sole sludge digestion, respectively.


2021 ◽  
Author(s):  
Devarshi Sevak ◽  
Elsayed Elbeshbishy

Anaerobic co-digestion (AcoD) is more advantageous than conventional mono-digestion, because of higher gas production rate. This study was aimed to study the effect of mixture ratio in codigestion of manure and source separated organics (SSO) in mesophilic condition. Manure and SSO at different mixture ratios of 9:1, 7:3, 5:5, 3:7, and 1:9 on a volumetric basis were used to determine the effect of the mixture ratios on methane production in biomethane potential assay (BMP). Results showed that co-digestion of SSO and manure at the ratio of 1:9 (V/V) resulted in the highest biomethane production rate of 46 mL CH4 /day. In comparison, the maximum methane production rate for anaerobic digestion of manure alone was 43 mL CH4 /day. When manure is mixed with SSO at a ratio of 5:5, about 15% higher cumulative methane production has been achieved. This research also verified the advantages of co-digestion over mono-digestion. Keywords: Anaerobic Digestion, Co-digestion, Source Separated Organics (SSO), Manure


Sign in / Sign up

Export Citation Format

Share Document