scholarly journals Anaerobic Digestion of Pulping Wastewater Using Up-flow Anaerobic Sludge Blanket (UASB) Reactor at Mesophilic Condition

2015 ◽  
Vol 15 (3) ◽  
pp. 191-200
Author(s):  
Randa M. Osman ◽  
M. Hamad
2018 ◽  
Vol 78 (9) ◽  
pp. 1871-1878 ◽  
Author(s):  
Gustavo Vargas-Morales ◽  
Rolando Chamy ◽  
Santiago García-Gen

Abstract A variable-gain controller for anaerobic digestion of industrial winery wastewater is presented. A control law using both volatile fatty acids (VFA) and methane production rate as controlled variables and organic loading rate (OLR) as manipulated variable is defined. The process state is quantitatively estimated by an empirical function comparing VFA measurements against a setpoint value; then, it is modified with a second empirical function that compares the methane flow rate with a maximum capacity reference, and finally it is adjusted with a third factor considering the actual hydraulic retention time. The variable-gain function determines the extent of the OLR change applied to the system. The controller was successfully validated in a 95 L upflow-anaerobic-sludge-blanket (UASB) reactor, treating industrial wine wastewater at OLR ranged between 2.0 and 39.2 g COD/L d for 120 days at mesophilic conditions. Higher performance was achieved contrasted with a conventional strategy carried out in a parallel UASB unit.


2021 ◽  
Vol 47 (1) ◽  
pp. 174-180
Author(s):  
Henrique Sousa do Nascimento ◽  
Geísa Vieira Vasconcelos Magalhães ◽  
José Demontier Vieira de Souza-Filho ◽  
Ronaldo Stefanutti ◽  
Ari Clecius Alves de Lima ◽  
...  

This study evaluated the use of two anaerobic bioreactors in the production of biogas from malt bagasse waste. Bioreactor B1 was loaded with a mixture of 600mL of anaerobic sludge, 300g of organic waste, taken from an upflow anaerobic sludge blanket (UASB) reactor, and 300g of malt bagasse residue. Bioreactor B2 was loaded with a mixture of 600g of organic waste and 600mL of anaerobic sludge taken from an UASB reactor. The anaerobic digestion processes lasted for 10 weeks and the produced methane fraction was measured in 5 occasions. Bioreactor B1 presented low methane production (7.2%) but Bioreactor B2 showed a much more signif- icant percentage, reaching up to 48.3%. The experiments were capable of reproducing largescale operational conditions, enabling increased results in biogas capturing and processing, strengthening sustainability and energy efficiency. The experiment also showed the importance of studying different types of organic waste, seeking optimization of anaerobic digestion pro- cesses.


2014 ◽  
Vol 2014 ◽  
pp. 1-8 ◽  
Author(s):  
Mauro Berni ◽  
Ivo Dorileo ◽  
Grazielle Nathia ◽  
Tânia Forster-Carneiro ◽  
Daniel Lachos ◽  
...  

The issue of residues and industrial effluents represents an unprecedented environmental challenge in terms of recovery, storage, and treatment. This work discusses the perspectives of treating effluents through anaerobic digestion as well as reporting the experience of using an upflow anaerobic sludge blanket (UASB) reactor as biorefinery annex in a pulp and paper industrial plant to be burned in the boilers. The performance of the reactors has shown to be stable under considerable variations in load and showed a significant potential in terms of biogas production. The reactors UASB treated 3600.00 m3of effluent daily from a production of 150.00 tons. The biogas generation was 234.000 kg/year/mill, equivalent in combustible oil. The results of methane gas generated by the anaerobic system UASB (8846.00 kcal/m3) dislocate the equivalent of 650.0 kg of combustible oil (10000.00 kcal/kg) per day (or 234.000 kg/year). The production of 8846.00 Kcal/m3of energy from biogas can make a run at industrial plant for 2 hours. This substitution can save US$ 128.700 annually (or US$ 550.0 of fuel oil/tons). The companies are invested in the use of the biogas in diesel stationary motors cycle that feed the boilers with water in case of storage electricity.


Catalysts ◽  
2021 ◽  
Vol 11 (4) ◽  
pp. 512
Author(s):  
Jeremiah Chimhundi ◽  
Carla Hörstmann ◽  
Evans M. N. Chirwa ◽  
Hendrik G. Brink

The main objective of this study was to achieve the continuous biorecovery and bioreduction of Pb(II) using an industrially obtained consortia as a biocatalyst. An upflow anaerobic sludge blanket reactor was used in the treatment process. The bioremediation technique that was applied made use of a yeast extract as the microbial substrate and Pb(NO3)2 as the source of Pb(II). The UASB reactor exhibited removal efficiencies of between 90 and 100% for the inlet Pb concentrations from 80 to 2000 ppm and a maximum removal rate of 1948.4 mg/(L·d) was measured. XRD and XPS analyses of the precipitate revealed the presence of Pb0, PbO, PbS and PbSO4. Supporting experimental work carried out included growth measurements, pH, oxidation–reduction potentials and nitrate levels.


2016 ◽  
Vol 78 (5-6) ◽  
Author(s):  
Sunwanee Jijai ◽  
Chairat Siripatana ◽  
Sompong O-Thong ◽  
Norli Ismail

The three identical lab-scale upflow anaerobic sludge blanket (UASB) reactors were operated continuously for treating cannery seafood wastewater at seven hydraulic retention times (HRTs) of 5, 4, 3, 2, 1, 0.5 and 0.25 days. The different of granule sizes from three sources: a cassava factory (CS), a seafood factory (SS), and a palm oil mill (PS), average sizes in the range 1.5-1.7, 0.7-1.0 and 0.1-0.2 mm respectively were used as inocula for anaerobic digestion. The UASB-R1 used only granules from seafood factory (R1-SS), the UASB-R2 used mixed granules from seafood with cassava factory (R2-SS+CS) and the UASB-R3 used mixed granules from seafood factory with palm oil mill (R3-SS+PS). In this study selected mathematical models including Monod, Contois, Grau second-order and modified Stover-Kicannon kinetic models were applied to determine the substrate removal kinetics of UASB reactor. Kinetic parameters were determined through linear regression using experimental data obtained from the steady-state experiment and subsequently used to predict effluent COD. The results showed that Grau second-order and modified Stover-Kicannon kinetic models were more suitable than that of others for predicting the effluent COD, with high the correlation coefficient (R2). In addition, the UASB-R2 from mixed granules with cassava factory (SS+CS) gave the best performance and highest coefficient value.


Sign in / Sign up

Export Citation Format

Share Document