scholarly journals Interaction of various types of bisphenols with enzymes involved in melanin synthesis

Author(s):  
Harinishree Venkatesan ◽  
Ranjani Soundhararajan ◽  
Hemalatha Srinivasan
Keyword(s):  
Molecules ◽  
2021 ◽  
Vol 26 (9) ◽  
pp. 2526
Author(s):  
Joong-Hyun Shim

This study was performed to clarify the inhibitory effects of cycloheterophyllin on melanin synthesis. In order to elucidate the inhibitory effects of cycloheterophyllin on the B16F10 cell line, cell viability, messenger ribonucleic acid (mRNA) expressions, tyrosinase activity assay, and melanin production assay were measured. The effects of cycloheterophyllin on tyrosinase-related protein 1 (TYRP1)/TYRP2/tyrosinase (TYR)/microphthalmia-associated transcription factor (MITF) mRNA expressions and melanin content were determined. Quantitative real-time RT-PCR showed that cycloheterophyllin decreased the mRNA expression level of TYRP1/TYRP2/TYR/MITF genes and melanin production contents than α-MSH-treated B16F10 cells. The tyrosinase activity assay revealed that cycloheterophyllin decreased the melanin production in the B16F10 cells. These data show that cycloheterophyllin increases the whitening effects in the B16F10 cells; thus, cycloheterophyllin is a potent ingredient for skin whitening. Thus, further research on the mechanism of action of cycloheterophyllin for the development of functional materials should be investigated.


Author(s):  
Wilson Lim ◽  
Florianne Parel ◽  
Sybren de Hoog ◽  
Annelies Verbon ◽  
Wendy W J van de Sande

Abstract Background Eumycetoma is a fungal infection characterised by the formation of black grains by causative agents. The melanin biosynthetic pathways used by the most common causative agents of black-grain mycetoma are unknown and unravelling them could identify potential new therapeutic targets. Method Melanin biosynthetic pathways in the causative fungi were identified by the use of specific melanin inhibitors. Results In Trematosphaeria grisea and Falciformispora tompkinsii, 1,8-dihydroxynaphthalene (DHN)-melanin synthesis was inhibited, while DHN-, 3,4-dihydroxyphenylalanine (DOPA)- and pyo-melanin were inhibited in Medicopsis romeroi and Falciformispora senegalensis. Conclusion Our data suggest that Me. romeroi and F. senegalensis synthesise DHN-, DOPA- and pyo-melanin, while T. grisea and F. tompkinsii only synthesise DHN-melanin.


2021 ◽  
Vol 22 (7) ◽  
pp. 3755
Author(s):  
Jakub Rok ◽  
Zuzanna Rzepka ◽  
Justyna Kowalska ◽  
Klaudia Banach ◽  
Artur Beberok ◽  
...  

Minocycline is a drug which induces skin hyperpigmentation. Its frequency reaches up to 50% of treated patients. The adverse effect diminishes the great therapeutic potential of minocycline, including antibacterial, neuroprotective, anti-inflammatory and anti-cancer actions. It is supposed that an elevated melanin level and drug accumulation in melanin-containing cells are related to skin hyperpigmentation. This study aimed to evaluate molecular and biochemical mechanism of minocycline-induced hyperpigmentation in human normal melanocytes, as well as the contribution of UV radiation to this side effect. The experiments involved the evaluation of cyto- and phototoxic potential of the drug using cell imaging with light and confocal microscopes as well as biochemical and molecular analysis of melanogenesis. We showed that minocycline induced melanin synthesis in epidermal melanocytes. The action was intensified by UV irradiation, especially with the UVB spectrum. Minocycline stimulated the expression of microphthalmia-associated transcription factor (MITF) and tyrosinase (TYR) gene. Higher levels of melanin and increased activity of tyrosinase were also observed in treated cells. Moreover, minocycline triggered the supranuclear accumulation of tyrosinase, similar to UV radiation. The decreased level of premelanosome protein PMEL17 observed in all minocycline-treated cultures suggests disorder of the formation, maturation or distribution of melanosomes. The study revealed that minocycline itself was able to enhance melanin synthesis. The action was intensified by irradiation, especially with the UVB spectrum. Demonstrated results confirmed the potential role of melanin and UV radiation minocycline-induced skin hyperpigmentation.


2021 ◽  
Vol 7 (7) ◽  
pp. 538
Author(s):  
Rebecca Creamer ◽  
Deana Baucom Hille ◽  
Marwa Neyaz ◽  
Tesneem Nusayr ◽  
Christopher L. Schardl ◽  
...  

The legume Oxytropis sericea hosts a fungal endophyte, Alternaria oxytropis, which produces secondary metabolites (SM), including the toxin swainsonine. Polyketide synthase (PKS) and non-ribosomal peptide synthase (NRPS) enzymes are associated with biosynthesis of fungal SM. To better understand the origins of the SM, an unannotated genome of A. oxytropis was assessed for protein sequences similar to known PKS and NRPS enzymes of fungi. Contigs exhibiting identity with known genes were analyzed at nucleotide and protein levels using available databases. Software were used to identify PKS and NRPS domains and predict identity and function. Confirmation of sequence for selected gene sequences was accomplished using PCR. Thirteen PKS, 5 NRPS, and 4 PKS-NRPS hybrids were identified and characterized with functions including swainsonine and melanin biosynthesis. Phylogenetic relationships among closest amino acid matches with Alternaria spp. were identified for seven highly conserved PKS and NRPS, including melanin synthesis. Three PKS and NRPS were most closely related to other fungi within the Pleosporaceae family, while five PKS and PKS-NRPS were closely related to fungi in the Pleosporales order. However, seven PKS and PKS-NRPS showed no identity with fungi in the Pleosporales or the class Dothideomycetes, suggesting a different evolutionary origin for those genes.


Life Sciences ◽  
1992 ◽  
Vol 51 (1) ◽  
pp. 17-24 ◽  
Author(s):  
Lisha Zhang ◽  
Takemi Yoshida ◽  
Yukio Kuroiwa

2015 ◽  
Vol 81 ◽  
pp. 228-234 ◽  
Author(s):  
Hemachandran Hridya ◽  
Anantharaman Amrita ◽  
Mohan Sankari ◽  
C. George Priya Doss ◽  
Mohan Gopalakrishnan ◽  
...  

1984 ◽  
Vol 137 (4) ◽  
pp. 324-328 ◽  
Author(s):  
Philip A. Geis ◽  
Michael H. Wheeler ◽  
Paul J. Szaniszlo

Gene ◽  
2015 ◽  
Vol 567 (2) ◽  
pp. 138-145 ◽  
Author(s):  
Ping Chen ◽  
Jiying Wang ◽  
Haiyin Li ◽  
Yan Li ◽  
Peng Chen ◽  
...  

Sign in / Sign up

Export Citation Format

Share Document