human melanocytes
Recently Published Documents


TOTAL DOCUMENTS

662
(FIVE YEARS 78)

H-INDEX

65
(FIVE YEARS 4)

2021 ◽  
Vol 2021 ◽  
pp. 1-12
Author(s):  
Pengran Du ◽  
Shaolong Zhang ◽  
Shuli Li ◽  
Yuqi Yang ◽  
Pan Kang ◽  
...  

Vitiligo is a cutaneous depigmentation disease due to loss of epidermal melanocytes. Accumulating evidence has indicated that oxidative stress plays a vital role in vitiligo via directly destructing melanocytes and triggering inflammatory response that ultimately undermines melanocytes. Folic acid (FA), an oxidized form of folate with high bioavailability, exhibits potent antioxidant properties and shows therapeutic potential in multiple oxidative stress-related diseases. However, whether FA safeguards melanocytes from oxidative damages remains unknown. In this study, we first found that FA relieved melanocytes from H2O2-induced abnormal growth and apoptosis. Furthermore, FA enhanced the activity of antioxidative enzymes and remarkably reduced intracellular ROS levels in melanocytes. Subsequently, FA effectively activated nuclear factor E2-related factor 2 (Nrf2) pathway, and Nrf2 knockdown blocked the protective effects of FA on H2O2-treated melanocytes. Additionally, FA inhibited the production of proinflammatory HMGB1 in melanocytes under oxidative stress. Taken together, our findings support the protective effects of FA on human melanocytes against oxidative injury via the activation of Nrf2 and the inhibition of HMGB1, thus indicating FA as a potential therapeutic agent for the treatment of vitiligo.


2021 ◽  
Vol 0 (0) ◽  
Author(s):  
Karin J. P. Rocha-Brito ◽  
Stefano Piatto Clerici ◽  
Helon Guimarães Cordeiro ◽  
Amanda Petrina Scotá Ferreira ◽  
Emanuella Maria Barreto Fonseca ◽  
...  

Abstract Melanoma is a type of skin cancer with low survival rates after it has metastasized. In order to find molecular differences that could represent targets of quercetin in anti-melanoma activity, we have chosen SKMEL-103 and SKMEL-28 melanoma cells and human melanocytes as models. Firstly, we observed that quercetin was able in reducing SKMEL-103 cell viability, but not in SKMEL-28. Besides that, quercetin treatment caused inhibition of AXL in both cell lines, but upregulation of PIM-1 in SKMEL-28 and downregulation in SKMEL-103. Moreover, HIF-1 alpha expression decreased in both cell lines. Interestingly, quercetin was more effective against SKMEL-103 than kinases inhibitors, such as Imatinib, Temsirolimus, U0126, and Erlotinib. Interestingly, we observed that while the levels of succinate dehydrogenase and voltage-dependent anion channel increased in SKMEL-103, both proteins were downregulated in SKMEL-28 after quercetin’s treatment. Furthermore, AKT, AXL, PIM-1, ABL kinases were much more active and chaperones HSP90, HSP70 and GAPDH were highly expressed in SKMEL-103 cells in comparison with melanocytes. Our findings indicate, for the first time, that the efficacy of quercetin to kill melanoma cells depends on its ability in inhibiting tyrosine kinase and upregulating mitochondrial proteins, at least when SKMEL-103 and SKMEL-28 cells response were compared.


2021 ◽  
Author(s):  
Gamze Kuser Abali ◽  
Fumihito Noguchi ◽  
Pacman Szeto ◽  
Youfang Zhang ◽  
Cheng Huang ◽  
...  

Abstract The enhancer of zeste homolog 2 (EZH2) oncogene is a histone methyltransferase that functions canonically as a catalytic subunit of the polycomb repressive complex 2 (PRC2) to tri-methylate histone H3 at Lys 27 (H3K27me3). Although targeting of EZH2 methyltransferase is a promising therapeutic strategy against cancer, methyltransferase-independent oncogenic functions of EZH2 are also described. Moreover, pharmacological EZH2 methyltransferase inhibition was only variably effective in pre-clinical and clinical studies, suggesting that targeting EZH2 methyltransferase alone may be insufficient. Here, we demonstrate a non-canonical mechanism of EZH2’s oncogenic activity through interactions with inosine monophosphate dehydrogenase 2 (IMPDH2) and downstream promotion of guanosine-5'-triphosphate (GTP) production. Liquid Chromatography-Mass Spectrometry (LC-MS) of EZH2 immunoprecipitates from melanoma cell lines and human patient-derived xenografts (PDXs) revealed EZH2-IMPDH2 interactions that were verified to occur between the N-terminal EED-binding domain of cytosolic EZH2 and the CBS domain of IMPDH2 in a PRC2- and methylation-independent manner. EZH2 silencing reduced cellular GTP, ribosome biogenesis, RhoA-mediated actomyosin contractility and melanoma cell proliferation and invasion by impeding the activity and cytosolic localization of IMPDH2. Guanosine, which replenishes GTP, reversed these effects and thereby promoted invasive and clonogenic cell states even in EZH2 silenced cells. IMPDH2 silencing antagonized the proliferative and invasive effects of EZH2, also in a guanosine-reversible manner. In human melanomas, high cytosolic EZH2 and IMPDH2 expression were associated with nucleolar enlargement, a marker for ribosome biogenesis. We also identified EZH2-IMPDH2 complexes in a range of cancers in which Sappanone A (SA), which inhibits EZH2-IMPDH2 interactions and thereby IMPDH2 tetramerization, was anti-tumorigenic, although notably non-toxic in normal human melanocytes and bone marrow derived blood progenitor cells that lacked observable EZH2-IMPDH2 interactions. These findings illuminate a previously unrecognized, non-canonical, methyltransferase-independent, but GTP-dependent mechanism by which EZH2 regulates tumorigenicity in melanoma and other cancers, opening new avenues for development of anti-EZH2 therapeutics.


eLife ◽  
2021 ◽  
Vol 10 ◽  
Author(s):  
Andrew S McNeal ◽  
Rachel L Belote ◽  
Hanlin Zeng ◽  
Marcus Urquijo ◽  
Kendra Barker ◽  
...  

Benign melanocytic nevi frequently emerge when an acquired BRAFV600E mutation triggers unchecked proliferation and subsequent arrest in melanocytes. Recent observations have challenged the role of oncogene-induced senescence in melanocytic nevus formation, necessitating investigations into alternative mechanisms for the establishment and maintenance of proliferation arrest in nevi. We compared the transcriptomes of melanocytes from healthy human skin, nevi, and melanomas arising from nevi and identified a set of microRNAs as highly expressed nevus-enriched transcripts. Two of these microRNAs—MIR211-5p and MIR328-3p—induced mitotic failure, genome duplication, and proliferation arrest in human melanocytes through convergent targeting of AURKB. We demonstrate that BRAFV600E induces a similar proliferation arrest in primary human melanocytes that is both reversible and conditional. Specifically, BRAFV600E expression stimulates either arrest or proliferation depending on the differentiation state of the melanocyte. We report genome duplication in human melanocytic nevi, reciprocal expression of AURKB and microRNAs in nevi and melanomas, and rescue of arrested human nevus cells with AURKB expression. Taken together, our data describe an alternative molecular mechanism for melanocytic nevus formation that is congruent with both experimental and clinical observations.


Author(s):  
Eva T Kramer ◽  
Paula M Godoy ◽  
Charles K Kaufman

Abstract Transcriptional and epigenetic characterization of melanocytes and melanoma cells isolated from their in vivo context promises to unveil key differences between these developmentally related normal and cancer cell populations. We therefore engineered an enhanced Danio rerio (zebrafish) melanoma model with fluorescently labeled melanocytes to allow for isolation of normal (wild type) and premalignant (BRAFV600E-mutant) populations for comparison to fully transformed BRAFV600E-mutant, p53 loss-of-function melanoma cells. Using fluorescence activated cell sorting to isolate these populations, we performed high-quality RNA-seq and ATAC-seq on sorted zebrafish melanocytes vs. melanoma cells, which we provide as a resource here. Melanocytes had consistent transcriptional and accessibility profiles, as did melanoma cells. Comparing melanocytes and melanoma, we note 4,128 differentially expressed genes and 56,936 differentially accessible regions with overall gene expression profiles analogous to human melanocytes and the pigmentation melanoma subtype. Combining the RNA-seq and ATAC-seq data surprisingly revealed that increased chromatin accessibility did not always correspond with increased gene expression, suggesting that though there is widespread dysregulation in chromatin accessibility in melanoma, there is a potentially more refined gene expression program driving cancerous melanoma. This data serves as a resource to identify candidate regulators of the normal vs. diseased states in a genetically controlled in vivo context.


2021 ◽  
Author(s):  
Marcella Willemsen ◽  
Gabrielle Krebbers ◽  
Esther P.M. Tjin ◽  
Karin J. Willemsen ◽  
Alesha Louis ◽  
...  
Keyword(s):  

2021 ◽  
Vol 22 (21) ◽  
pp. 11966
Author(s):  
Klaudia Banach ◽  
Justyna Kowalska ◽  
Zuzanna Rzepka ◽  
Artur Beberok ◽  
Jakub Rok ◽  
...  

Malignant melanoma is responsible for the majority of skin cancer-related deaths. The methods of cancer treatment include surgical removal, chemotherapy, immunotherapy, and targeted therapy. However, neither of these methods gives satisfactory results. Therefore, the development of new anticancer therapeutic strategies is very important and may extend the life span of people suffering from melanoma. The aim of this study was to examine the effect of ketoprofen (KTP) and UVA radiation (UVAR) therapy on cell proliferation, apoptosis, and cell cycle distribution in both melanotic melanoma cells (COLO829) and human melanocytes (HEMn-DP) in relation to its supportive effect in the treatment of melanoma. The therapy combining the use of pre-incubation with KTP and UVAR causes a significant increase in the anti-proliferative properties of ketoprofen towards melanoma cells and the co-exposure of melanotic melanoma cells induced apoptosis shown as the mitochondrial membrane breakdown, cell-cycle deregulation, and DNA fragmentation. Moreover, co-treatment led to GSH depletion showing its pro-apoptotic effect dependent on ROS overproduction. The treatment did not show a significant effect on normal cells—melanocytes—which indicates its high selectivity. The results suggest a possible benefit from the use of the ketoprofen and ultraviolet A irradiation as a new concept of melanotic melanoma therapy.


2021 ◽  
Author(s):  
Ruth Halaban ◽  
Aaron Newman ◽  
Farshad Farshidfar ◽  
Cong Peng ◽  
Chaya Levovitz ◽  
...  

Abstract Acral melanoma, the most common melanoma subtype among non-Caucasian individuals, is associated with poor prognosis. However, its key molecular drivers remain obscure. Here, we performed integrative genomic and clinical profiling of acral melanomas from a cohort of 104 patients treated in North America or China. We found that recurrent, late-arising amplifications of cytoband chr22q11.21 are a leading determinant of inferior survival, strongly associated with metastasis, and linked to downregulation of immunomodulatory genes associated with response to immune checkpoint blockade. Unexpectedly, LZTR1 – a known tumor suppressor in other cancers – is a key candidate oncogene in this cytoband. Silencing of LZTR1 in melanoma cell lines caused apoptotic cell death independent of major hotspot mutations or melanoma subtypes. Conversely, overexpression of LZTR1 in normal human melanocytes initiated processes associated with metastasis, including anchorage-independent growth, formation of spheroids, and increased levels of MAPK and SRC activities. Our results provide new insights into the etiology of acral melanoma and implicate LZTR1 as a key tumor promoter and therapeutic target


Sign in / Sign up

Export Citation Format

Share Document