Design of CuO/SnO2 heterojunction photocatalyst with enhanced UV light-driven photocatalytic activity on congo-red and malachite green dyes

2019 ◽  
Vol 16 (6) ◽  
pp. 1291-1300 ◽  
Author(s):  
D. Selleswari ◽  
P. Meena ◽  
D. Mangalaraj
2021 ◽  
Vol 78 (5) ◽  
pp. 2849-2865
Author(s):  
Bircan Haspulat Taymaz ◽  
Recep Taş ◽  
Handan Kamış ◽  
Muzaffer Can

2015 ◽  
Vol 827 ◽  
pp. 19-24 ◽  
Author(s):  
Nur Afifah ◽  
Nadia Febiana Djaja ◽  
Rosari Saleh

In this study, the photocatalytic activity of pure Fe- doped ZnO and Fe- doped ZnO/Montmorillonite nanocomposite has been investigated for the degradation of malachite green under UV light irradiation. Both photocatalysts were synthesized using co-precipitation method and characterized by X-ray diffraction, energy dispersive X-ray spectroscopy, Fourier-transform infrared absorption, and electron spin resonance. The results showed that the photocatalytic efficiency is better in the presence of montmorillonite compared to pure Fe- doped ZnO. To detect the possible reactive species involved in degradation of organic dyes control experiments with introducing scavengers into the solution of organic dyes were carried out. It is found that electron plays an important role in the degradation of malachite green.


2013 ◽  
Vol 789 ◽  
pp. 538-544 ◽  
Author(s):  
Sariman Sariman ◽  
Yuni Krisyuningsih Krisnandi ◽  
Budi Setiawan

Anatase TiO2 enrichment from Bangka ilmenite (FeTiO3) has been conducted. First, ilmenite was mechanically activated using a planetary ballmill to obtain sub-micron sized particle followd by magnetic separation. Chemical treatment, dissolution of iron using hydrochloric solution, was performed to obtain titania rich residue. EDX data shows that the iron content was reduced in the titania residue. Ammonium hydroxide (NH4OH) solution was added to the washed precipitate, before adding H2O2 solution (10%) that acted as a coordination agent to leach titanium from the the residue in the form of ammonium peroxo titanate solution. The peroxo titanate powder was obtained by evaporating the ammonium peroxo titanate solution. XRD data show that TiO2 anatase was formed after peroxo titanate powder was calcined at the temperature of 600°C. EDX data also shows that the obtained anatase TiO2 still has impurities, such as silicon (0.98%) and iron (2.75%). Its photocatalytic activity was studied on photodegradation of Congo Red and compared with the photocatalytic activity of commercial TiO2, Degussa P-25. The photoreactivity test on degradation of Congo Red solution with the as-prepared Anatase gave 20% degradation which is still inferior compared to the results given by Degussa P25 (92%). This indicates that the impurities in as-prepared Anatase may cover the titania surface hindering the contact between Congo Red as well as UV-light and the active titania species.


2014 ◽  
Vol 54 (11) ◽  
pp. 3134-3145 ◽  
Author(s):  
Kandasamy Jothivenkatachalam ◽  
Saravanan Prabhu ◽  
Arjunan Nithya ◽  
Singaravelu Chandra Mohan ◽  
Kulandaivel Jeganathan

Catalysts ◽  
2021 ◽  
Vol 11 (1) ◽  
pp. 117
Author(s):  
Zahir Muhammad ◽  
Farman Ali ◽  
Muhammad Sajjad ◽  
Nisar Ali ◽  
Muhammad Bilal ◽  
...  

Degradation of organic dyes and their byproducts by heterogeneous photocatalysts is an essential process, as these dyes can be potentially discharged in wastewater and threaten aquatic and xerophyte life. Therefore, their complete mineralization into nontoxic components (water and salt) is necessary through the process of heterogeneous photocatalysis. In this study, Zr/CrO2 (Zirconium-doped chromium IV oxide) nanocomposite-based photocatalysts with different compositions (1, 3, 5, 7 & 9 wt.%) were prepared by an environmentally friendly, solid-state reaction at room temperature. The as-prepared samples were calcined under air at 450 °C in a furnace for a specific period of time. The synthesis of Zr/CrO2 photocatalysts was confirmed by various techniques, including XRD, SEM, EDX, FT-IR, UV-Vis, and BET. The photocatalytic properties of all samples were tested towards the degradation of methylene blue and methyl orange organic dyes under UV light. The results revealed a concentration-dependent photocatalytic activity of photocatalysts, which increased the amount of dopant (up to 5 wt.%). However, the degradation efficiency of the catalysts decreased upon further increasing the amount of dopant due to the recombination of holes and photoexcited electrons.


Sign in / Sign up

Export Citation Format

Share Document